【題目】當(dāng)x=4時(shí),式子5(x+b)﹣10bx+4x的值相等,則b=_____

【答案】6

【解析】

先根據(jù)題意列出方程5x+b)﹣10=bx+4xx的值代入原方程即可求得b的值

根據(jù)題意,可得5x+b)﹣10=bx+4xx=4代入5x+b)﹣10=bx+4x,5×4+b)﹣10=4b+4×4,解得b=6

故答案為:6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:

如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關(guān)系

小吳同學(xué)探究此問題的思路是:將△BCD繞點(diǎn)D,逆時(shí)針旋轉(zhuǎn)90°到△AED處,點(diǎn)B,C分別落在點(diǎn)A,E處(如圖②),易證點(diǎn)C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC=CD

簡單應(yīng)用:

(1)在圖①中,若AC=,BC=,則CD=

(2)如圖③,AB是⊙O的直徑,點(diǎn)C、D在⊙上,,若AB=13,BC=12,求CD的長

拓展規(guī)律:

(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數(shù)式表示)

(4)如圖⑤,∠ACB=90°,AC=BC,點(diǎn)P為AB的中點(diǎn),若點(diǎn)E滿足AE=AC,CE=CA,點(diǎn)Q為AE的中點(diǎn),則線段PQ與AC的數(shù)量關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】江蘇是全國首個(gè)自然村“村村通寬帶”省份.我市某村為了將當(dāng)?shù)剞r(nóng)產(chǎn)品外銷,建立了淘寶網(wǎng)店.該網(wǎng)店于今年7月底以每袋25元的成本價(jià)收購一批農(nóng)產(chǎn)品.當(dāng)商品售價(jià)為每袋40元時(shí),8月份銷售256袋.9、10月該商品十分暢銷.銷售量持續(xù)走高.在售價(jià)不變的基礎(chǔ)上,10月份的銷售量達(dá)到400袋.設(shè)9、10這兩個(gè)月月平均增長率不變.

(1)求9、10這兩個(gè)月的月平均增長率;

(2)為迎接雙“十一”,11月份起,該網(wǎng)店采用降價(jià)促銷的方式回饋顧客,經(jīng)調(diào)查發(fā)現(xiàn),該農(nóng)產(chǎn)品每降價(jià)1元/每袋,銷售量就增加5袋,當(dāng)農(nóng)產(chǎn)品每袋降價(jià)多少元時(shí),該淘寶網(wǎng)店11月份獲利4250元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品原價(jià)289元,經(jīng)連續(xù)兩次降價(jià)后售價(jià)為256元,設(shè)平均每降價(jià)的百分率為x,則下面所列方程正確的是( )

A. 2891﹣x2="256"B. 2561﹣x2=289

C. 2891﹣2x2="256"D. 2561﹣2x2=289

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A、B的坐標(biāo)分別為(1,0)、(4,0),將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線y=2x﹣6上時(shí),線段BC掃過的面積為 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A(﹣3,﹣2)向上平移2個(gè)單位,再向右平移2個(gè)單位到點(diǎn)B,則點(diǎn)B的坐標(biāo)為( 。
A.(1,0)
B.(1,﹣4)
C.(﹣1,0)
D.(﹣5,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,點(diǎn)P是四邊形ABCD四條邊上的一個(gè)動(dòng)點(diǎn),若P到BD的距離為,則滿足條件的點(diǎn)P有 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)是(8,4),連接AC,BC

(1)求過O,A,C三點(diǎn)的拋物線的解析式,并判斷△ABC的形狀;

(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿OB以每秒2個(gè)單位長度的速度向點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC以每秒1個(gè)單位長度的速度向點(diǎn)C運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),PA=QA?

(3)在拋物線的對稱軸上,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項(xiàng)式2x3﹣5x2+x﹣1與多項(xiàng)式3x3+(2m﹣1)x2﹣5x+3的和不含二次項(xiàng),則m=( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步練習(xí)冊答案