【題目】小張?jiān)诩讟茿處向外看,由于受到前面乙樓的遮擋,最近只能看到地面D處,俯角為α.小穎在甲樓B處(B在A的正下方)向外看,最近能看到地面E處,俯角為β,地面上G,F(xiàn),D,E在同一直線上,已知乙樓高CF為10m,甲乙兩樓相距FG為15m,俯角α=45°,β=35°.
(1)求點(diǎn)A到地面的距離AG;
(2)求A,B之間的距離.(結(jié)果精確到0.1m)
(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)
【答案】
(1)解:∵由已知得:∠AGD=∠BGE=∠CFD=90°,∠CDF=α=45°,
∴DF=CF=10,DG=FG+FD=15+10=25,
∴AG=GD=25,
答:位置A離地面的垂直距離為25米
(2)解:∵∠CEF=β=35°,
∴ =tan∠CEF=tan35°≈0.70,
∴EF= = ≈14.29,
∴EG=GF+EF=15+14.29=29.29,
又∵ =tan∠CEF=tan35°≈0.70,
∴BG=0.70EG=0.70×29.29≈20.50,
∴AB≈25﹣20.50≈4.5.
答:A,B相差4.5米.
【解析】(1)先由等腰直角三角形的性質(zhì)得出DF=CF,DG=FG+FD,進(jìn)而可得出結(jié)論;(2)根據(jù)銳角三角函數(shù)的定義得出EF與BG的長,進(jìn)而可得出結(jié)論.
【考點(diǎn)精析】利用關(guān)于仰角俯角問題對題目進(jìn)行判斷即可得到答案,需要熟知仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E,F(xiàn)分別是矩形ABCD的邊BC和CD上的點(diǎn),其中AB=3 ,BC=3 ,把△ABE沿AE進(jìn)行折疊,使點(diǎn)B落在對角線AC上,在把△ADF沿AF折疊,使點(diǎn)D落在對角線AC上,點(diǎn)P為直線AF上任意一點(diǎn),則PE的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠接受了20天內(nèi)生產(chǎn)1200臺GH型電子產(chǎn)品的總?cè)蝿?wù).已知每臺GH型產(chǎn)品由4個G型裝置和3個H型裝置配套組成.工廠現(xiàn)有80名工人,每個工人每天能加工6個G型裝置或3個H型裝置.工廠將所有工人分成兩組同時開始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數(shù)量正好全部配套組成GH型產(chǎn)品.
(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH型電子產(chǎn)品?請列出二元一次方程組解答此問題.
(2)為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補(bǔ)充一些新工人,這些新工人只能獨(dú)立進(jìn)行G型裝置的加工,且每人每天只能加工4個G型裝置.1.設(shè)原來每天安排x名工人生產(chǎn)G型裝置,后來補(bǔ)充m名新工人,求x的值(用含m的代數(shù)式表示)2.請問至少需要補(bǔ)充多少名新工人才能在規(guī)定期內(nèi)完成總?cè)蝿?wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:三角形ABC內(nèi)接于圓O,∠BAC與∠ABC的角平分線AE,BE相交于點(diǎn)E,延長AE交外接圓O于點(diǎn)D,連接BD,DC,且∠BCA=60°
(1)求∠BED的大小;
(2)證明:△BED為等邊三角形;
(3)若∠ADC=30°,圓O的半徑為r,求等邊三角形BED的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張寬為6cm的平行四邊形紙帶ABCD如圖1所示,AB=10cm,小明用這張紙帶將底面周長為10cm直三棱柱紙盒的側(cè)面進(jìn)行包貼(要求包貼時沒有重疊部分).小明通過操作后發(fā)現(xiàn)此類包貼問題可將直三棱柱的側(cè)面展開進(jìn)行分析.
(1)若紙帶在側(cè)面纏繞三圈,正好將這個直三棱柱紙盒的側(cè)面全部包貼滿.則紙帶AD的長度為 cm;
(2)若AD=100cm,紙帶在側(cè)面纏繞多圈,正好將這個直三棱柱紙盒的側(cè)面全部包貼滿.則這個直三棱柱紙盒的高度是 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,BE平分∠ABC交AD于點(diǎn)E,BD平分∠EBC.
(1)若∠DBC=30°,求∠A的度數(shù);
(2)若點(diǎn)F在線段AE上,且7∠DBC-2∠ABF=180°,請問圖中是否存在與∠DFB相等的角?若存在,請寫出這個角,并說明理由;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD內(nèi)有兩條相交線段MN,EF,M,N,E,F分別在邊AB,CD,AD,BC上.小明認(rèn)為:若MN=EF,則MN⊥EF;小亮認(rèn)為:若MN⊥EF,則MN=EF.你認(rèn)為( )
A. 僅小明對 B. 僅小亮對 C. 兩人都對 D. 兩人都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分線EF交AC于點(diǎn)E,交BC于點(diǎn)F.試探索BF與CF的數(shù)量關(guān)系,寫出你的結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com