【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線(xiàn)EF分別交AC,AB邊于E,F(xiàn)點(diǎn).若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線(xiàn)段EF上一動(dòng)點(diǎn),則△CDM周長(zhǎng)的最小值為(

A.6
B.8
C.10
D.12

【答案】C
【解析】解:連接AD,
∵△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),
∴AD⊥BC,
∴SABC= BCAD= ×4×AD=16,解得AD=8,
∵EF是線(xiàn)段AC的垂直平分線(xiàn),
∴點(diǎn)C關(guān)于直線(xiàn)EF的對(duì)稱(chēng)點(diǎn)為點(diǎn)A,
∴AD的長(zhǎng)為CM+MD的最小值,
∴△CDM的周長(zhǎng)最短=(CM+MD)+CD=AD+ BC=8+ ×4=8+2=10.
故選C.

連接AD,由于△ABC是等腰三角形,點(diǎn)D是BC邊的中點(diǎn),故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長(zhǎng),再根據(jù)EF是線(xiàn)段AB的垂直平分線(xiàn)可知,點(diǎn)B關(guān)于直線(xiàn)EF的對(duì)稱(chēng)點(diǎn)為點(diǎn)A,故AD的長(zhǎng)為BM+MD的最小值,由此即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一艘客輪由西向東行駛,在A點(diǎn)處測(cè)得距燈塔B的距離為40nmile,前進(jìn)方向AC與直線(xiàn)AB夾角為30°.

(1)分別用方向和距離描述燈塔相對(duì)于客輪的位置和客輪相對(duì)于燈塔的位置?
(2)如果在燈塔B的周?chē)?5nmile的范圍內(nèi)有暗礁,客輪若不改變方向有沒(méi)有觸礁的危險(xiǎn).(溫馨提示:按照適當(dāng)?shù)谋壤?huà)圖測(cè)量換算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了“綠色出行”,減少霧霾,家住番禺在廣州中心城區(qū)上班的王經(jīng)理,上班出行由自駕車(chē)改為乘坐地鐵出行,已知王經(jīng)理家距上班地點(diǎn)21千米,他用地鐵方式平均每小時(shí)出行的路程,比他用自駕車(chē)平均每小時(shí)行駛的路程的2倍還多5千米,他從家出發(fā)到達(dá)上班地點(diǎn),地鐵出行所用時(shí)間是自駕車(chē)方式所用時(shí)間的 .求王經(jīng)理地鐵出行方式上班的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】六邊形的內(nèi)角和是(

A.1080°B.900°C.720°D.540°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a>0,則點(diǎn)P(﹣a,2)應(yīng)在(
A.第﹣象限內(nèi)
B.第二象限內(nèi)
C.第三象限內(nèi)
D.第四象限內(nèi)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將點(diǎn)P (﹣3,4)先向下平移3個(gè)單位,再向左平移2個(gè)單位后得到點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x+3y﹣3=0,則2x·8y=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①35=3×3×3×3×3;②﹣1是單項(xiàng)式,且它的次數(shù)為1;③若∠1=90°﹣∠2,則∠1與∠2互為余角;④對(duì)于有理數(shù)n、x、y(其中xy≠0),若 = ,則x=y.其中不正確的有(
A.3個(gè)
B.2個(gè)
C.1個(gè)
D.0個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn):5(m2n﹣3mn2﹣1)﹣(m2n﹣7mn2﹣9)

查看答案和解析>>

同步練習(xí)冊(cè)答案