如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=.
(1)求OD、OC的長(zhǎng);
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.
解:(1)∵AD、BC是⊙O的兩條切線,∴∠OAD=∠OBC=90°。
在Rt△AOD與Rt△BOC中,OA=OB=3,AD=2,BC=,
根據(jù)勾股定理得:。
(2)證明:過(guò)D作DE⊥BC,可得出∠DAB=∠ABE=∠BED=90°,
∴四邊形ABED為矩形。
∴BE=AD=2,DE=AB=6,EC=BC﹣BE=。
在Rt△EDC中,根據(jù)勾股定理得:,
∴。
∴△DOC∽△OBC。
(3)證明:過(guò)O作OF⊥DC,交DC于點(diǎn)F,
∵△DOC∽△OBC,∴∠BCO=∠FCO。
∵在△BCO和△FCO中,,
∴△BCO≌△FCO(AAS)。∴OB=OF。
∴CD是⊙O切線。
【解析】
試題分析:(1)由AB的長(zhǎng)求出OA與OB的長(zhǎng),根據(jù)AD,BC為圓的切線,利用切線的性質(zhì)得到三角形AOD與三角形BOC都為直角三角形,利用勾股定理即可求出OD與OC的長(zhǎng)。
(2)過(guò)D作DE垂直于BC,可得出BE=AD,DE=AB,在直角三角形DEC中,利用勾股定理求出CD的長(zhǎng),根據(jù)三邊對(duì)應(yīng)成比例的三角形相似即可得證。
(3)過(guò)O作OF垂直于CD,根據(jù)(2)中兩三角形相似,利用相似三角形的對(duì)應(yīng)角相等得到一對(duì)角相等,利用AAS得到三角形OCF與三角形OCB全等,由全等三角形的對(duì)應(yīng)邊相等得到OF=OB,即OF為圓的半徑,即可確定出CD為圓O的切線!
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
BC |
BD |
3 |
4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
CP+DP |
BP+AP |
AP |
DP |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
9 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 |
3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com