【題目】如圖直線與x軸、y軸分別交于點A,B,C是的中點,點D在直線上,以為直徑的圓與直線的另一交點為E,交y軸于點F,G,已知,,則的長是______.
【答案】
【解析】
如圖,設(shè)CD的中點為O′,設(shè)直線BA交直線y=﹣2于M,直線y=﹣2交y軸于P,作CH⊥OB于H,連接O′F,作AJ⊥DM于J,O′N⊥FG于N.首先利用等腰直角三角形的性質(zhì)和條件可確定A,B,C的坐標(biāo),再設(shè)D(m,﹣2),進(jìn)而可得O′N與O′F的長,而FN=,然后在Rt△O′FN中利用勾股定理構(gòu)建方程即可求出m,問題即得解決.
解:如圖,設(shè)CD的中點為O′,設(shè)直線BA交直線y=﹣2于M,直線y=﹣2交y軸于P,作CH⊥OB于H,連接O′F,作AJ⊥DM于J,O′N⊥FG于N.
∵CD是⊙O′的直徑,∴∠CED=90°,
∵直線y=﹣x+m(m>0)與x軸、y軸分別交于點A,B,
∴A(m,0),B(0,m),
∴OA=OB,∴∠OAB=45°,
∵OA∥DM,∴∠EMD=∠OAB=45°,
∵∠DEM=90°,∴ED=EM,
∴EC+ED=EC+EM=CM=,
∵JA⊥DM,∴∠AJM=90°,
∴AJ=JM=2,AM=2,
∴BC=CA=4,∴AB=8,∴BO=AO=8,
∴A(8,0),B(0,8),C(4,4),
設(shè)D(m,﹣2),則O′((m+4),1),
∴O′N=(m+4),O′F=CD=,
∵O′N⊥FG,∴FN=,
在Rt△O′FN中,由勾股定理,得:,解得m=1,
∴CD=.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根.
(1)求實數(shù)k的取值范圍.
(2)若方程兩實根滿足|x1|+|x2|=x1·x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=6,AB=10,一個三角形的直角頂點E是邊AB上的一動點,一直角邊過點D,另一直角邊與BC交于F,若AE=x,BF=y,則y關(guān)于x的函數(shù)關(guān)系的圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師要求在一個已知的中,利用尺規(guī)作出一個菱形.
(1)小明的作法如下:如圖1,連接,作的垂直平分線分別交,于點,,連接,.請你判斷小明的作法是否正確;若正確,說明理由;若不正確,請你作出符合條件的菱形;
(2)小亮的作法:如圖2,分別作,的平分線,,分別交,于點,,連接,則四邊形是菱形.請你直接判斷小亮的作法是否正確.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠按用戶需求生產(chǎn)一種產(chǎn)品,成本每件20萬元,規(guī)定每件售價不低于成本,且不高于40萬元。經(jīng)市場調(diào)查,每年的銷售量y(件)與每件售價x(萬元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價x(萬元/件) | 25 | 30 | 35 |
銷售量y(件) | 50 | 40 | 30 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每年的總利潤為W(萬元),求W與x之間的函數(shù)表達(dá)式(利潤=收入-成本);
(3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少萬元時獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市促銷活動,將A,B,C三種水果采用甲、乙、丙三種方式搭配裝進(jìn)禮盒進(jìn)行銷售.每盒的總成本為盒中A,B,C三種水果成本之和,盒子成本忽略不計.甲種方式每盒分別裝A,B,C三種水果6kg,3kg,1kg;乙種方式每盒分別裝A,B,C三種水果2kg,6kg,2kg.甲每盒的總成本是每千克A水果成本的12.5倍,每盒甲的銷售利潤率為20%;每盒甲比每盒乙的售價低25%;每盒丙在成本上提高40%標(biāo)價后打八折出售,獲利為每千克A水果成本的1.2倍.當(dāng)銷售甲、乙、丙三種方式搭配的禮盒數(shù)量之比為2:2:5時,則銷售總利潤率為_____.(利潤率=利潤÷成本×100%)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖像與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.
(1)求線段BC的長;
(2)當(dāng)0≤y≤3時,請直接寫出x的范圍;
(3)點P是拋物線上位于第一象限的一個動點,連接CP,當(dāng)∠BCP=90o時,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com