【題目】如圖,等腰三角形ABC中,AC=BC=10,AB=12.

(1)動手操作:利用尺規(guī)作以BC為直徑的⊙O,⊙O交AB于點(diǎn)D,⊙O交AC于點(diǎn)E,并且過點(diǎn)D作DF⊥AC交AC于點(diǎn)F.
(2)求證:直線DF是⊙O的切線;
(3)連接DE,記△ADE的面積為S1 , 四邊形DECB的面積為S2 , 求 的值.

【答案】
(1)

解:如下圖所示,圖形為所求;


(2)

證明:連接OD

∵DF⊥AC,

∴∠AFD=90°,

∵AC=BC,

∴∠A=∠B,

∵OB=OD,

∴∠B=∠ODB,

∴∠A=∠ODB

∴OD∥AC,

∴∠ODF=∠AFD=90°,

∴直線DF是⊙O的切線;


(3)

解:連接DE;

∵BC是⊙O的直徑,

∴∠CDB=90°,即CD⊥AB,

∵AC=BC,CD⊥AB,

∴AD=BD= AB=6,

∵四邊形DECB是圓內(nèi)接四邊形,

∴∠BDE+∠C=180°,

∵∠BDE+∠ADE=180°,

∴∠C=∠ADE,

∵在△ADE和△ACB中,∠ADE=∠C,∠DAE=∠CAB,

∴△ADE∽△ACB,

= ,

=

∵SABC=SADE+S四邊形DECB,

= = ,

= ,即 =


【解析】(1)根據(jù)題意作出圖形即可;(2)連接OD,根據(jù)等腰三角形的性質(zhì)得到∠A=∠ODB根據(jù)平行線的判定得到OD∥AC,由平行線的性質(zhì)得到∠ODF=∠AFD=90°,于是得到結(jié)論;(3)連接DE;根據(jù)圓周角定理得到∠CDB=90°,即CD⊥AB,由等腰三角形的性質(zhì)得到AD=BD= AB=6,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠BDE+∠C=180°,等量代換得到∠C=∠ADE,根據(jù)相似三角形的性質(zhì)得到 = ,于是得到結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的周長為38,第一條邊長為a,第二條邊比第一條邊的2倍多3.

(1)表示第三條邊;

(2)若三角形為等腰三角形,求a的值;

(3)若a為正整數(shù),此三角形是否為直角三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDABC的外角ABP的角平分線,DADC,DEBP于點(diǎn)E,若AB=5,BC=3,則BE的長為 _____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程
(1)(x﹣1)2=4
(2)x2=3x
(3)2x2﹣x﹣1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強(qiáng)的錢包內(nèi)有10元錢、20元錢和50元錢的紙幣各1張.
(1)若從中隨機(jī)取出1張紙幣,求取出紙幣的金額是20元的概率;
(2)若從中隨機(jī)取出2張紙幣,求取出紙幣的總額可購買一件51元的商品的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正六邊形的邊心距為 ,這個(gè)正六邊形的面積為( )
A.2
B.4
C.6
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)的圖象交于點(diǎn)A(-1,2),B(m,-1)

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)x軸上是否存在點(diǎn)P(n,0),使△ABP為等腰三角形,請你直接寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+c(a≠0)與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,C兩點(diǎn)(點(diǎn)C在x軸正半軸上),△ABC為等腰直角三角形,且面積為4.現(xiàn)將拋物線沿BA方向平移,平移后的拋物線經(jīng)過點(diǎn)C時(shí),與x軸的另一交點(diǎn)為E,其頂點(diǎn)為F,對稱軸與x軸的交點(diǎn)為H.

(1)求a,c的值;
(2)連結(jié)OF,試判斷△OEF是否為等腰三角形,并說明理由;
(3)現(xiàn)將一足夠大的三角板的直角頂點(diǎn)Q放在射線AF或射線HF上,一直角邊始終過點(diǎn)E,另一直角邊與y軸相交于點(diǎn)P,是否存在這樣的點(diǎn)Q,使以點(diǎn)P,Q,E為頂點(diǎn)的三角形與△POE全等?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線經(jīng)過坐標(biāo)原點(diǎn)O,點(diǎn)A(6,﹣6 ),且以y軸為對稱軸.

(1)求拋物線的解析式;
(2)如圖2,過點(diǎn)B(0,﹣ )作x軸的平行線l,點(diǎn)C在直線l上,點(diǎn)D在y軸左側(cè)的拋物線上,連接DB,以點(diǎn)D為圓心,以DB為半徑畫圓,⊙D與x軸相交于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)),連接CN,當(dāng)MN=CN時(shí),求銳角∠MNC的度數(shù);

(3)如圖3,在(2)的條件下,平移直線CN經(jīng)過點(diǎn)A,與拋物線相交于另一點(diǎn)E,過點(diǎn)A作x軸的平行線m,過點(diǎn)(﹣3,0)作y軸的平行線n,直線m與直線n相交于點(diǎn)S,點(diǎn)R在直線n上,點(diǎn)P在EA的延長線上,連接SP,以SP為邊向上作等邊△SPQ,連接RQ,PR,若∠QRS=60°,線段PR的中點(diǎn)K恰好落在拋物線上,求Q點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案