【題目】如圖1,直線軸交于點,與軸交于點,以為直徑作,點為線段上一動點(與點O、A不重合),作,連結(jié)并延長交于點

1)求點的坐標(biāo)和的值;

2)設(shè)

①當(dāng)時,求的值及點的坐標(biāo);

②求關(guān)于的函數(shù)表達式.

3)如圖2,連接,當(dāng)點在線段上運動時,求的最大值.

【答案】1;=;(2)①,點的坐標(biāo)為;②;(3

【解析】

1)令x=0求出y值可得B點坐標(biāo),令y=0求出x值可得A點坐標(biāo);根據(jù)AB坐標(biāo)可知OA、OB的長,根據(jù)正切的定義即可得的值;

2)①由x=1可得點C與點M重合,如圖1,連接,作,設(shè),則,由垂徑定理可得PA=PB,利用勾股定理可求出a值,根據(jù)正切的定義即可得出y值,可得PA的長,由AB是直徑可知,可得,即可求出AD、PD的長,利用面積法及勾股定理即可求出DH、PH的長,進而可得點D坐標(biāo);

②如圖2,作軸于點,可得,可求出OE=2,根據(jù)平行線分線段成比例定理可得,可用x表示出OP的長,根據(jù)正切的定義即可得出yx的關(guān)系式;

3)如圖3,連接,由可證明,根據(jù)相似三角形的性質(zhì)可得,即可證明,可得,進而可證明,根據(jù)相似三角形的性質(zhì)可得,設(shè),則,即可用t表示出,根據(jù)二次函數(shù)的性質(zhì)即可求出的最大值.

1)∵,

∴當(dāng)時,,當(dāng)時,

,

OA=8,OB=4,

2)①當(dāng)時,,

,即點重合,

如圖1,連接,作,設(shè),則

中,

解得,

的直徑,

,

設(shè)PD=x,則AD=x,

x2+(x)2=52

解得:x=3,(負(fù)值舍去)即PD=3

AD=x=4,

,,

∵點D在第四象限,

∴點的坐標(biāo)為

②如圖2,作軸于點;

,

關(guān)于的函數(shù)表達式為

3)如圖3,連接,

OA=8OB=4,

AB=,

,即,

,

,

,

,

設(shè),則,

,

當(dāng)時,的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC為等邊三角形.

1)求作:ABC的外接圓O.(不寫作法,保留作圖痕跡)

2)射線AOBC于點D,交O于點E,過EO的切線EF,與AB的延長線交于點F

根據(jù)題意,將(1)中圖形補全;

求證:EFBC;

DE2,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,△ABC是等邊三角形.

1)如圖1,將線段AC繞點A逆時針旋轉(zhuǎn)90°,得到AD,連接BD,∠BAC的平分線交BD于點E,連接CE

①求∠AED的度數(shù);

②用等式表示線段AECE、BD之間的數(shù)量關(guān)系(直接寫出結(jié)果).

2)如圖2,將線段AC繞點A順時針旋轉(zhuǎn)90°,得到AD,連接BD,∠BAC的平分線交DB的延長線于點E,連接CE

①依題意補全圖2

②用等式表示線段AE、CEBD之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線yx2bxc與直線yx3分別交于x軸,y軸上的B,C兩點,設(shè)該拋物線與x軸的另一個交點為A,頂點為D,連接CDx軸于點E

1)求該拋物線的函數(shù)表達式;

2)求該拋物線的對稱軸和D點坐標(biāo);

3)點F,G是對稱軸上兩個動點,且FG=2,點F在點G的上方,請直接寫出四邊形ACFG的周長的最小值;

4)連接BD,若Py軸上,且∠PBC=DBA+DCB,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生對防溺水安全知識的掌握情況,從全校名學(xué)生中隨機抽取部分學(xué)生進行測試,并將測試成績(百分制,得分均為整數(shù))進行統(tǒng)計分析,繪制了如下不完整的頻數(shù)表和頻數(shù)直方圖.

被抽取的部分學(xué)生安全知識測試成績頻數(shù)表

組別

成績(分)

頻數(shù)(人)

頻率

由圖表中給出的信息回答下列問題:

表中的 ;抽取部分學(xué)生的成績的中位數(shù)在 組;

把上面的頻數(shù)直方圖補充完整;

如果成績達到分以上(包括)為優(yōu)秀,請估計該校名學(xué)生中成績優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x1的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)圖象的一個交點為M(﹣2,m).

1)求反比例函數(shù)的解析式;

2)當(dāng)y2y1時,求x的取值范圍;

3)求點B到直線OM的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,對角線ACBD交于點O,E是邊AD上的一個動點(與點A,D不重合),連接EO并延長,交BC于點F,連接BE,DF.下列說法:

對于任意的點E,四邊形BEDF都是平行四邊形;

當(dāng)∠ABC>90°時,至少存在一個點E,使得四邊形BEDF是矩形;

當(dāng)AB<AD時,至少存在一個點E,使得是四邊形BEDF是菱形;

當(dāng)∠ADB=45°時,至少存在一個點E,使得是四邊形BEDF是正方形.

所有正確說法的序號是:_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)yx22mx+1圖象與y軸的交點為A,將點A向右平移4個單位長度得到點B

1)直接寫出點A與點B的坐標(biāo);

2)求出拋物線的對稱軸(用含m的式子表示);

3)若函數(shù)yx22mx+1的圖象與線段AB恰有一個公共點,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育老師為了解本校九年級女生1分鐘“仰臥起坐”體育測試項目的達標(biāo)情況,從該校九年級136名女生中,隨機抽取了20名女生,進行了1分鐘仰臥起坐測試,獲得數(shù)據(jù)如下:

收集數(shù)據(jù):抽取20名女生的1分鐘仰臥起坐測試成績()如下:

 38 46 42 52 55 43 59 46 25 38

 35 45 51 48 57 49 47 53 58 49

1)整理、描述數(shù)據(jù):請你按如下分組整理、描述樣本數(shù)據(jù),把下列表格補充完整:

范圍

人數(shù)

(說明:每分鐘仰臥起坐個數(shù)達到49個及以上時在中考體育測試中可以得到滿分)

2)分析數(shù)據(jù):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、滿分率如下表所示:

平均數(shù)

中位數(shù)

滿分率

46.8

47.5

得出結(jié)論:①估計該校九年級女生在中考體育測試中1分鐘“仰臥起坐”項目可以得到滿分的人數(shù);

②該中心所在區(qū)縣的九年級女生的1分鐘“仰臥起坐”總體測試成績?nèi)缦拢?/span>

平均數(shù)

中位數(shù)

滿分率

45.3

49

請你結(jié)合該校樣本測試成績和該區(qū)縣總體測試成績,為該校九年級女生的1分鐘“仰臥起坐”達標(biāo)情況做一下評估.

查看答案和解析>>

同步練習(xí)冊答案