精英家教網 > 初中數學 > 題目詳情
精英家教網已知:如圖,BC是半圓O的直徑,D、E是半圓O上兩點,
ED
=
CE
,CE的延長線與BD的延長線交于點A,過點E作EF⊥BC于點F,交CD與點G.
(1)求證:AE=DE;
(2)若AE=2
5
,cot∠ABC=
3
4
,求DG.
分析:(1)由圓周角定理及直角三角形的性質可得到∠A=∠ADE,再根據等角對等邊即可求得結論.
(2)連接BE,根據已知及相似三角形的判定得到△ECG∽△DCE,根據相似三角形的對應邊成比例即可求得CG,DG的值.
解答:精英家教網(1)證明:∵BC是半圓O直徑,
∴∠ADC=∠BDC=90°.
ED
=
CE
,
∴∠EDC=∠ECD.
∴∠A=∠ADE.
∴AE=DE.(3分)

(2)解:連接BE,
ED
=
CE
,
∴DE=EC.
∴AE=EC=2
5

∵BC是半圓O直徑,
∴∠BEC=90°即BE⊥AC.
∴BA=BC.
∵Rt△BDC中,cot∠ABC=
3
4
,
設BD=3x,CD=4x,則BC=5x,
∴AB=BC=5x,AD=2x.
∵AE•AC=AD•AB,
2
5
×4
5
=2x•5x.
解得:x=2,即CD=8.(6分)
∵EF⊥BC,
∴∠CEF+∠ECB=90°.
∵B,C,E,D四點共圓,
∴∠ADE=∠ECB.
又∵∠EDC+∠ADE=90°,
∴∠CEF=∠EDC.
∵∠DCE為公共角,
∴△ECG∽△DCE.
GC
EC
=
EC
DC

∴GC=
(2
5
)
2
8
=
5
2

∴DG=8-
5
2
=
11
2
.(8分)
點評:本題考查圓周角定理,相似三角形的判定,直角三角形的性質等知識點的綜合運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•閔行區(qū)二模)已知:如圖,拋物線y=-x2+bx+c與x軸的負半軸相交于點A,與y軸相交于點B(0,3),且∠OAB的余切值為
13

(1)求該拋物線的表達式,并寫出頂點D的坐標;
(2)設該拋物線的對稱軸為直線l,點B關于直線l的對稱點為C,BC與直線l相交于點E.點P在直線l上,如果點D是△PBC的重心,求點P的坐標;
(3)在(2)的條件下,將(1)所求得的拋物線沿y軸向上或向下平移后頂點為點P,寫出平移后拋物線的表達式.點M在平移后的拋物線上,且△MPD的面積等于△BPD的面積的2倍,求點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•鄂州)已知,如圖,△OBC中是直角三角形,OB與x軸正半軸重合,∠OBC=90°,且OB=1,BC=
3
,將△OBC繞原點O逆時針旋轉60°再將其各邊擴大為原來的m倍,使OB1=OC,得到△OB1C1,將△OB1C1繞原點O逆時針旋轉60°再將其各邊擴大為原來的m倍,使OB2=OC1,得到△OB2C2,…,如此繼續(xù)下去,得到△OB2012C2012,則m=
2
2
.點C2012的坐標是
(-22013,0)
(-22013,0)

查看答案和解析>>

科目:初中數學 來源: 題型:

已知,如圖,已知點A的坐標是(-
3
,0),點B的坐標是(3
3
,0),以AB為直徑作⊙M,交y軸的負半軸于點C,交y正半軸于點D,連接AC、BC,過A、B、C三點作拋物線.
(1)求該拋物線的解析式;
(2)連接D M并延長交⊙M于點E,過點E作⊙M的切線分別交x軸、y軸于點F、G,求直線FG的解析式;
(3)在拋物線上是否存在這樣的點P,使得以A、B、C、P為頂點的四邊形是梯形?若存在,請直接寫出所有滿足條件的點P的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•南通一模)已知:如圖,直y=2x+b交x軸于點B,交y軸于點C,點A為x軸正半軸上一點,AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點P是線段AB中垂線上的點,是否存在這樣的點P,使△PBC成為直角三角形?若存在,試直接寫出所有符合條件的點P的坐標;若不存在,試說明理由;
(3)點Q為線段AB上一個動點(點Q與點A、B不重合),QE∥AC,交BC于點E,以QE為邊,在點B的異側作正方形QEFG.設AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數關系式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•封開縣一模)已知,如圖,在平面直角坐標系中,Rt△ABC的斜邊BC在x軸上,直角頂點A在y軸的正半軸上,A(0,2),B(-1,0).
(1)求點C的坐標;
(2)求過A、B、C三點的拋物線的解析式和對稱軸;
(3)設點P(m,n)是拋物線在第一象限部分上的點,△PAC的面積為S,求S關于m的函數關系式,并求使S最大時點P的坐標.

查看答案和解析>>

同步練習冊答案