如圖,一小球從斜坡O點處拋出,球的拋出路線可以用二次函數(shù)y=4x-
1
2
x2
刻畫,斜坡可以用一次函數(shù)y=
1
2
x
刻畫.
(1)求小球到達的最高點的坐標;
(2)小球的落點是A,求點A的坐標.
(1)由題意得,y=4x-
1
2
x2=-
1
2
(x-4)2+8,
故可得小球到達的最高點的坐標為(4,8).

(2)聯(lián)立兩解析式可得:
y=4x-
1
2
x2
y=
1
2
x

解得:
x=0
y=0
x=7
y=
7
2

故可得點A的坐標為(7,
7
2
).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,過A、C兩點的拋物線y=x2+bx+c上有一點M,已知A(-1,0),C(0,-2),
(1)這個拋物線的解析式為______;
(2)作⊙M與直線AC相切,切點為C,則M點的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=(t+1)x2+2(t+2)x+
3
2
在x=0和x=2時的函數(shù)值相等.
(1)求二次函數(shù)的解析式;
(2)若一次函數(shù)y=kx+6的圖象與二次函數(shù)的圖象都經(jīng)過點A(-3,m),求m和k的值;
(3)設二次函數(shù)的圖象與x軸交于點B,C(點B在點C的左側),將二次函數(shù)的圖象在點B,C間的部分(含點B和點C)向左平移n(n>0)個單位后得到的圖象記為G,同時將(2)中得到的直線y=kx+6向上平移n個單位.請結合圖象回答:當平移后的直線與圖象G有公共點時,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C(0,3),過點C作x軸的平行線與拋物線交于點D,拋物線的頂點為M,直線y=x+5經(jīng)過D、M兩點.
(1)求此拋物線的解析式;
(2)連接AM、AC、BC,試比較∠MAB和∠ACB的大小,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2-4ax+c(a≠0)經(jīng)過A(0,-1),B(5,0)兩點,點P是拋物線上的一個動點,且位于直線AB的下方(不與A,B重合),過點P作直線PQ⊥x軸,交AB于點Q,設點P的橫坐標為m.
(1)求a,c的值;
(2)設PQ的長為S,求S與m的函數(shù)關系式,寫出m的取值范圍;
(3)以PQ為直徑的圓與拋物線的對稱軸l有哪些位置關系?并寫出對應的m取值范圍.(不必寫過程)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線與x交于A(-1,0)、E(3,0)兩點,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)設拋物線頂點為D,△AOB與△DBE是否相似?如果相似,請給以證明;如果不相似,請說明理由.
(3)若點P為第一象限拋物線上一動點,連接BP、PE,求四邊形ABPE面積的最大值,并求此時P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2經(jīng)過點(1,5),當y=15時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,二次函數(shù)y=a(x+1)2-4的圖象與x軸分別交于A、B兩點,與y軸交于點D,點C是二次函數(shù)y=a(x+1)2-4的圖象的頂點,CD=
2

(1)求a的值.
(2)點M在二次函數(shù)y=a(x+1)2-4圖象的對稱軸上,且∠AMC=∠BDO,求點M的坐標.
(3)將二次函數(shù)y=a(x+1)2-4的圖象向下平移k(k>0)個單位,平移后的圖象與直線CD分別交于E、F兩點(點F在點E左側),設平移后的二次函數(shù)的圖象的頂點為C1,與y軸的交點為D1,是否存在實數(shù)k,使得CF⊥FC1?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,用一塊長為50cm、寬為30cm的長方形鐵片制作一個無蓋的盒子,若在鐵片的四個角截去四個相同的小正方形,設小正方形的邊長為xcm.
(1)底面的長AB=______cm,寬BC=______cm(用含x的代數(shù)式表示)
(2)當做成盒子的底面積為300cm2時,求該盒子的容積.
(3)該盒子的側面積S是否存在最大的情況?若存在,求出x的值及最大值是多少?若不存在,說明理由.

查看答案和解析>>

同步練習冊答案