【題目】某商場第一次購進20件A商品,40件B商品,共用了1980元.脫銷后,在進價不變的情況下,第二次購進40件A商品,20件B商品,共用了1560元.商品A的售價為每件30元,商品B的售價為每件60元.
(1)求A,B兩種商品每件的進價分別是多少元?
(2)為了滿足市場需求,需購進A,B兩種商品共1000件,且A種商品的數(shù)量不少于B種商品數(shù)量的3倍,請你設計進貨方案,使這1000件商品售完后,商場獲利最大,并求出最大利潤.
【答案】(1)A種商品每件的進價為19元,B種商品每件的進價為40元;(2)當購進A種商品750件、B種商品250件時,銷售利潤最大,最大利潤為13250元.
【解析】
(1)設A種商品每件的進價為x元,B種商品每件的進價為y元,根據(jù)兩次進貨情況表,可得出關于x、y的二元一次方程組,解之即可得出結論;
(2)設購進B種商品m件,獲得的利潤為w元,則購進A種商品(1000-m)件,根據(jù)總利潤=單件利潤×購進數(shù)量,即可得出w與m之間的函數(shù)關系式,由A種商品的數(shù)量不少于B種商品數(shù)量的3倍,即可得出關于m的一元一次不等式,解之即可得出m的取值范圍,再根據(jù)一次函數(shù)的性質即可解決最值問題.
(1)設A種商品每件的進價為x元,B種商品每件的進價為y元,
根據(jù)題意得:,
解得:.
答:A種商品每件的進價為19元,B種商品每件的進價為40元;
(2)設購進B種商品m件,獲得的利潤為w元,則購進A種商品(1000﹣m)件,
根據(jù)題意得:w=(30﹣19)(1000﹣m)+(60﹣40)m=9m+11000.
∵A種商品的數(shù)量不少于B種商品數(shù)量的3倍,
∴,
解得:,
∵在w=9m+11000中,k=9>0,
∴w的值隨m的增大而增大,
∴當m=250時,w取最大值,最大值為9×250+11000=13250,
∴當購進A種商品750件、B種商品250件時,銷售利潤最大,最大利潤為13250元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,M、N分別是邊AD、BC邊上的中點,且△ABM≌△DCM;E、F分別是線段BM、CM的中點.
(1)求證:平行四邊形ABCD是矩形.
(2)求證:EF與MN互相垂直.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班“數(shù)學興趣小組”對函數(shù),的圖象和性質進行了探究過程如下,請補充完成:
(1)函數(shù)的自變量的取值范圍是__________________;
(2)下表是與的幾組對應值.請直接寫出,的值:______________;________.
… | 0 | 2 | 3 | 4 | … | |||||||
… |
| -3 | 5 | 3 | … |
(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點,根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)通過觀察函數(shù)的圖象,小明發(fā)現(xiàn)該函數(shù)圖象與反比例函數(shù)的圖象形狀相同,是中心對稱圖形,且點和是一組對稱點,則其對稱中心的坐標為________.
(5)請寫出一條該函數(shù)的性質:___________________.
(6)當時,關于的方程有實數(shù)解,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點是平行四邊形的邊的中點,是對角線,交的延長線于,連接交于點.
(1)如圖1,求證:;
(2)如圖2,當四邊形是矩形時,請你確定四邊形的形狀并說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市少年宮為小學生開設了繪畫、音樂、舞蹈和跆拳道四類興趣班,為了解學生對這四類興趣班的喜愛情況,對學生進行了隨機問卷調查(問卷調查表如圖所示),將調查結果整理后繪制了一幅不完整的統(tǒng)計表
興趣班 | 頻數(shù) | 頻率 |
A | 0.35 | |
B | 18 | 0.30 |
C | 15 | |
D | 6 | |
合計 | 1 |
請你根據(jù)統(tǒng)計表中提供的信息回答下列問題:
(1)統(tǒng)計表中的 , ;
(2)根據(jù)調查結果,請你估計該市2000名小學生中最喜歡“繪畫”興趣的人數(shù);
(3)王姝和李要選擇參加興趣班,若他們每人從、、、四類興趣班中隨機選取一類,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一類的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,我們不妨把橫坐標和縱坐標相等的點叫“相等點”,例如點,都是“相等點”,顯然“相等點”有無數(shù)個.
(1)若點是反比例函數(shù)為常數(shù),)的圖象上的“相等點”,求這個反比例函數(shù)的解析式;
(2)一次函數(shù)為常數(shù),)的圖象上存在“相等點”嗎?若存在,請用含的式子表示出“相等點”的坐標,若不存在,說明理由;
(3)若二次函數(shù)為常數(shù))的圖象上有且只有一個“相等點”,令當時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com