【題目】如圖1.在菱形ABCD中,AB=2 ,tan∠ABC=2,∠BCD=α,點(diǎn)E從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著射線DA的方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒),將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α度,得到對(duì)應(yīng)線段CF,連接BD、EF,BD交EC、EF于點(diǎn)P、Q.

(1)求證:△ECF∽△BCD;
(2)當(dāng)t為何值時(shí),△ECF≌△BCD?
(3)當(dāng)t為何值時(shí),△EPQ是直角三角形?

【答案】
(1)

證明:菱形ABCD中,BC=CD,

由旋轉(zhuǎn)的性質(zhì)可知,CE=CF,

= ,

又∵∠FCE=∠DCB=α,

∴△FCE∽△DCB


(2)

由(1)知,△FCE∽△DCB,

∴當(dāng)CE=CB=CD時(shí),△FCE≌△DCB;

①E、D重合,此時(shí)t=0;

②如圖,過(guò)點(diǎn)C作CM⊥AD,

當(dāng)EM=MD時(shí),EC=CD,

Rt△CMD中,MD=CDcos∠CDA=2 × =2,

∴t=ED=2MD=4,

∴當(dāng)t=0或4時(shí),△FCE≌△DCB


(3)

∵CE=CF,∴∠CEQ<90°.

①當(dāng)∠EQD=90°時(shí),

∠ECF=∠BCD,BC=DC,EC=FC,

∴∠CBD=∠CEF,

∵∠BPC=∠EPQ,

∴∠BCP=∠EQP=90°.

在Rt△CDE中,∠CED=90°,

∵AB=CD=2 ,tan∠ABC=tan∠ADC=2,

∴DE=2,

∴t=2秒;

②當(dāng)∠EPQ=90°時(shí),

∵菱形ABCD對(duì)角線AC⊥BD,

∴EC和AC重合.

∴DE=2 ,

∴t=2 秒;

∴當(dāng)t=2或者2 時(shí),△APQ為直角三角形.


【解析】(1)根據(jù)對(duì)應(yīng)邊成比例、夾角相等的兩個(gè)三角形相似證明;(2)根據(jù)全等三角形的性質(zhì)、余弦的概念計(jì)算;(3)分∠EQD=90°、∠EPQ=90°兩種情況,根據(jù)正切的概念、菱形的性質(zhì)解答.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解相似圖形的相關(guān)知識(shí),掌握形狀相同,大小不一定相同(放大或縮。;判定:①平行;②兩角相等;③兩邊對(duì)應(yīng)成比例,夾角相等;④三邊對(duì)應(yīng)成比例.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)E,且ACBD,作BFCD,垂足為點(diǎn)F,BFAC交于點(diǎn)C,BGE=ADE.

(1)如圖1,求證:AD=CD;

(2)如圖2,BHABE的中線,若AE=2DE,DE=EG,在不添加任何輔助線的情況下,請(qǐng)直接寫出圖2中四個(gè)三角形,使寫出的每個(gè)三角形的面積都等于ADE面積的2倍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值

(1)[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.5

(2)(+m﹣2)÷,其中m=﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B,C三點(diǎn)在同一條直線上.

(1)用上述字母表示的不同線段共有____條,它們是______________________

(2)用上述字母表示的不同射線共有____條,它們是______________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中的ABC,若小方格邊長(zhǎng)為1,格點(diǎn)ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A,C的坐標(biāo)分別為(﹣1,1),(0,﹣2),請(qǐng)你根據(jù)所學(xué)的知識(shí).

(1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

(2)作出ABC關(guān)于y軸對(duì)稱的三角形A1B1C1

(3)判斷ABC的形狀,并求出ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列兩個(gè)等式:3+2=3×2-1,4+=4×-1,給出定義如下:

我們稱使等式a+b=ab-1成立的一對(duì)有理數(shù)a,b為“椒江有理數(shù)對(duì)”,記為(a,b),如:數(shù)對(duì)(3,2),(4,)都是“椒江有理數(shù)對(duì)”.

(1)數(shù)對(duì)(-2,1),(5,)中是“椒江有理數(shù)對(duì)”的是 ;

(2)若(a,3)是“椒江有理數(shù)對(duì)”,求a的值;

(3)若(m,n)是“椒江有理數(shù)對(duì)”,則(-n,-m) “椒江有理數(shù)對(duì)”(填“是”、“不是”或“不確定”).

(4)請(qǐng)?jiān)賹懗鲆粚?duì)符合條件的“椒江有理數(shù)對(duì)” (注意:不能與題目中已有的“椒江有理數(shù)對(duì)”重復(fù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑是2,AB是⊙O的弦,點(diǎn)P是弦AB上的動(dòng)點(diǎn),且1≤OP≤2,則弦AB所對(duì)的圓周角的度數(shù)是(
A.60°
B.120°
C.60°或120°
D.30°或150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,老師準(zhǔn)備了若干個(gè)如圖1的三種紙片,A種紙片邊長(zhǎng)為a的正方形,B種紙片是邊長(zhǎng)為b的正方形,C種紙片長(zhǎng)為a、寬為b的長(zhǎng)方形.并用A種紙片一張,B種紙片張,C種紙片兩張拼成如圖2的大正方形.

(1)請(qǐng)用兩種不同的方法求圖2大正方形的面積.

方法1:   ;方法2:   

(2)觀察圖2,請(qǐng)你寫出下列三個(gè)代數(shù)式:(a+b)2,a2+b2,ab之間的等量關(guān)系.   

(3)根據(jù)(2)題中的等量關(guān)系,解決如下問(wèn)題:

①已知:a+b=5,a2+b2=11,求ab的值;

②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年我市某公司分兩次采購(gòu)了一批大蒜,第一次花費(fèi)40萬(wàn)元,第二次花費(fèi)60萬(wàn)元.已知第一次采購(gòu)時(shí)每噸大蒜的價(jià)格比去年的平均價(jià)格上漲了500元,第二次采購(gòu)時(shí)每噸大蒜的價(jià)格比去年的平均價(jià)格下降了500元,第二次的采購(gòu)數(shù)量是第一次采購(gòu)數(shù)量的兩倍.
(1)試問(wèn)去年每噸大蒜的平均價(jià)格是多少元?
(2)該公司可將大蒜加工成蒜粉或蒜片,若單獨(dú)加工成蒜粉,每天可加工8噸大蒜,每噸大蒜獲利1000元;若單獨(dú)加工成蒜片,每天可加工12噸大蒜,每噸大蒜獲利600元.由于出口需要,所有采購(gòu)的大蒜必需在30天內(nèi)加工完畢,且加工蒜粉的大蒜數(shù)量不少于加工蒜片的大蒜數(shù)量的一半,為獲得最大利潤(rùn),應(yīng)將多少噸大蒜加工成蒜粉?最大利潤(rùn)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案