【題目】科學(xué)考察隊(duì)的一輛越野車需要穿越一片沙漠,但這輛車每次裝滿汽油最多只能行駛,隊(duì)長想出一個(gè)方法,在沙漠中設(shè)若干個(gè)儲油點(diǎn)(越野車穿越出沙漠,就可以另外加油).

1)如果穿越全程大于的沙漠,在沙漠中設(shè)一個(gè)儲油點(diǎn),越野車裝滿油從起點(diǎn)出發(fā),到儲油點(diǎn)時(shí)從車中取出部分油放進(jìn)儲油點(diǎn),然后返回出發(fā)點(diǎn),加滿油后再開往,到儲油點(diǎn)時(shí),取出儲存的所有油放在車上,再從出發(fā)到達(dá)終點(diǎn),此時(shí),這輛越野車穿越這片沙漠的最大行程是多少?

2)如果穿越全程大于的沙漠,在沙漠中設(shè)2個(gè)儲油點(diǎn),,越野車裝滿油從起點(diǎn)出發(fā),到儲油點(diǎn)時(shí)從車中取出部分油放進(jìn)儲油點(diǎn);然后返回出發(fā)點(diǎn)加滿油,到儲油點(diǎn)時(shí)取出儲油點(diǎn)的全部油放到車上,再到達(dá)儲油點(diǎn),從車中取出部分油放進(jìn)儲油點(diǎn);然后返回出發(fā)點(diǎn)加滿油,到儲油點(diǎn)取出儲存的所有油放在車上,最后到達(dá)終點(diǎn).此時(shí),這輛越野車穿越這片沙漠的最大行程是多少

【答案】1;(2

【解析】

1)分析越野車的行車過程,要保證車上的油最多可行駛600km,設(shè)儲油點(diǎn)A離起點(diǎn)S的距離為x km,當(dāng)越野車第二次回到儲油點(diǎn)A時(shí)可以建立一個(gè)關(guān)于x的方程,解方程求出x的值,從而可求最大行程;

2)分析越野車的行車過程,要保證車上的油最多可行駛600km,設(shè)儲油點(diǎn)A離起點(diǎn)S的距離為x km,儲油點(diǎn)B離儲油點(diǎn)A的距離為y km,當(dāng)越野車第二次回到儲油點(diǎn)A時(shí)可以建立一個(gè)關(guān)于x的方程,當(dāng)越野車第二次回到儲油點(diǎn)B時(shí)可以建立一個(gè)關(guān)于x,y的方程,解方程組求出x,y的值,從而可求最大行程.

1)設(shè)儲油點(diǎn)A離起點(diǎn)S的距離為x km

則越野車從起點(diǎn)S出發(fā)到A點(diǎn)再回到S點(diǎn),共行駛2x km,所以最多在A點(diǎn)放(600-2xkm路程的油,然后再一次從S點(diǎn)出發(fā)到點(diǎn)A,行駛x km,根據(jù)車上最多裝行駛600km的油,則有

解得

∴在A儲油點(diǎn)放了 km路程的油

∴越野車最多行駛

2)設(shè)儲油點(diǎn)A離起點(diǎn)S的距離為x km, 儲油點(diǎn)B離儲油點(diǎn)A的距離為y km,

當(dāng)越野車第二次回到A點(diǎn)時(shí)有,

當(dāng)越野車第二次回到B點(diǎn)時(shí)有,

解得

∴越野車最多行駛

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y=-x2+2x有下列四個(gè)結(jié)論:

它的對稱軸是直線x=1;

設(shè)y1=-x12 +2x1,y2=-x22+2x2,則當(dāng)x2>x1時(shí),有y2>y1

它的圖象與x軸的兩個(gè)交點(diǎn)是(0,0和(2,0

當(dāng)0<x<2時(shí),y>0

其中正確結(jié)論的個(gè)數(shù)為(

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛慢車與一輛快車分別從甲、乙兩地同時(shí)出發(fā),勻速相向而行,兩車在途中相遇后都停留一段時(shí)間,然后分別按原速一同駛往甲地后停車.設(shè)慢車行駛的時(shí)間為x小時(shí),兩車之間的距離為y千米,圖中折線表示yx之間的函數(shù)圖象,請根據(jù)圖象解決下列問題:

1)甲乙兩地之間的距離為 千米;

2)求快車和慢車的速度;

3)求線段DE所表示的yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知x1=3是關(guān)于x的一元二次方程x2-4xc=0的一個(gè)根,求c的值和方程的另一個(gè)根.

(2)如圖,在矩形ABCD中.點(diǎn)O在邊AB上,∠AOC=BOD.求證:AO=OB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)畢業(yè)生響應(yīng)國家自主創(chuàng)業(yè)的號召,投資開辦了一個(gè)裝飾品商店.該店采購進(jìn)一種今年新上市的飾品進(jìn)行了30天的試銷售,購進(jìn)價(jià)格為20/件.銷售結(jié)束后,得知日銷售量P(件)與銷售時(shí)間x(天)之間有如下關(guān)系:P=﹣2x+801≤x≤30,且x為整數(shù));又知前20天的銷售價(jià)格Q1(元/件)與銷售時(shí)間x(天)之間有如下關(guān)系:Q1=1≤x≤20,且x為整數(shù)),后10天的銷售價(jià)格Q2(元/件)與銷售時(shí)間x(天)之間有如下關(guān)系:Q2=4521≤x≤30,且x為整數(shù)).

1)試寫出該商店前20天的日銷售利潤R1(元)和后10天的日銷售利潤R2(元)分別與銷售時(shí)間x(天)之間的函數(shù)關(guān)系式;

2)請問在這30天的試銷售中,哪一天的日銷售利潤最大?并求出這個(gè)最大利潤.

注:銷售利潤=銷售收入購進(jìn)成本.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9分)某校在基地參加社會實(shí)踐話動中,帶隊(duì)老師考問學(xué)生:基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長69米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為3米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的而積最大?下面是兩位學(xué)生爭議的情境:

請根據(jù)上面的信息,解決問題:

1)設(shè)AB=x米(x0),試用含x的代數(shù)式表示BC的長;

2)請你判斷誰的說法正確,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行以助人為樂,樂在其中為主題的演講比賽,比賽設(shè)一個(gè)第一名,一個(gè)第二名,兩個(gè)并列第三名.前四名中七、八年級各有一名同學(xué),九年級有兩名同學(xué),小蒙同學(xué)認(rèn)為前兩名是九年級同學(xué)的概率是,你贊成他的觀點(diǎn)嗎?請用列表法或畫樹形圖法分析說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是弧的中點(diǎn),⊙O的切線BD交AC的延長線于點(diǎn)D,E是OB的中點(diǎn),CE的延長線交切線BD于點(diǎn)F,AF交⊙O于點(diǎn)H,連接BH.

⑴求證:AC=CD.

⑵若OB=2,求BH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)學(xué)老師布置了這樣一道作業(yè)題:

在△ABC中,ABACBC,點(diǎn)D和點(diǎn)A在直線BC的同側(cè).BDBC,∠BACα,∠DBCβ,α+β120°,連接AD,求∠ADB的度數(shù).

小聰提供了研究:先從特殊問題開始研究:當(dāng)α90°,β30°時(shí),利用軸對稱知識,以AB為對稱軸構(gòu)造△ABD的軸對稱圖形△ABD,連接CD,然后利用α90°,β30°以及等邊三角形的相關(guān)知識可解決這個(gè)問題.

1)請結(jié)合小聰研究,畫出當(dāng)α90°,β30°時(shí)相應(yīng)的圖形;

2)請結(jié)合小聰研究,求出當(dāng)α90°,β30°時(shí)∠ADB的圖形;

3)請結(jié)合小聰研究,請解決數(shù)學(xué)老師布置的這道作業(yè)題.

查看答案和解析>>

同步練習(xí)冊答案