【題目】如圖,有兩條公路OM,ON相交成30°,沿公路OM方向離兩條公路的交叉處O點(diǎn)80米的A處有一所希望小學(xué),當(dāng)拖拉機(jī)沿ON方向行駛時(shí),路兩旁50米內(nèi)會(huì)受到噪音影響,已知有兩臺(tái)相距30米的拖拉機(jī)正沿ON方向行駛,它們的速度均為5/秒,問(wèn)這兩臺(tái)拖拉機(jī)沿ON方向行駛時(shí)給小學(xué)帶來(lái)噪音影響的時(shí)間是多少?

【答案】18

【解析】

本題考查的是勾股定理的應(yīng)用

點(diǎn)AAC⊥ON,求出AC的長(zhǎng),第一臺(tái)到B點(diǎn)時(shí)開(kāi)始對(duì)學(xué)校有噪音影響,第一臺(tái)到C點(diǎn)時(shí),第二臺(tái)到B點(diǎn)也開(kāi)始有影響,第一臺(tái)到D點(diǎn),第二臺(tái)到C點(diǎn),直到第二臺(tái)到D點(diǎn)噪音才消失.

如圖,過(guò)點(diǎn)AAC⊥ON

∵∠MON=30°,OA=80米,

∴AC=40米,

當(dāng)?shù)谝慌_(tái)拖拉機(jī)到B點(diǎn)時(shí)對(duì)學(xué)校產(chǎn)生噪音影響,此時(shí)AB=50

由勾股定理得:BC=30,

第一臺(tái)拖拉機(jī)到D點(diǎn)時(shí)噪音消失,

所以CD=30

由于兩臺(tái)拖拉機(jī)相距30米,則第一臺(tái)到D點(diǎn)時(shí)第二臺(tái)在C點(diǎn),還須前行30米后才對(duì)學(xué)校沒(méi)有噪音影響.

所以影響時(shí)間應(yīng)是:90÷5=18秒.

答:這兩臺(tái)拖拉機(jī)沿ON方向行駛給小學(xué)帶來(lái)噪音影響的時(shí)間是18秒.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,于點(diǎn),點(diǎn)上,過(guò),使,連接于點(diǎn),當(dāng)時(shí),下列結(jié)論:①;;;

其中正確的有( ).

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線表示三條相互交叉的公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有(

A.一處B.二處C.三處D.四處

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2014元旦前夕,某商場(chǎng)試銷一種成本為30元的文化衫,經(jīng)試銷發(fā)現(xiàn),若每件按34元的價(jià)格銷售,每天能賣(mài)出36件;若每件按39元的價(jià)格銷售,每天能賣(mài)出21件.假定每天銷售件數(shù)y(件)是銷售價(jià)格x()的一次函數(shù).

(1)直接寫(xiě)出yx之間的函數(shù)關(guān)系式.

(2)在不積壓且不考慮其他因素的情況下,每件的銷售價(jià)格定為多少元時(shí),才能使每天獲得的利潤(rùn)P最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)魏晉時(shí)期的數(shù)學(xué)家劉徽創(chuàng)立了割圓術(shù),認(rèn)為圓內(nèi)接正多邊形邊數(shù)無(wú)限增加時(shí),周長(zhǎng)就越接近圓周長(zhǎng),由此求得了圓周率π的近似值,設(shè)半徑為r的圓內(nèi)接正n邊形的周長(zhǎng)為L,圓的直徑為d,如圖所示,當(dāng)n=6時(shí),,那么當(dāng)n=12時(shí),π≈=______.(結(jié)果精確到0.01,參考數(shù)據(jù):sin15°=cos75°≈0.259)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,弦AB=CDABCD于點(diǎn)E,且AEEBCEED,連結(jié)AO,DOBD

(1)求證:EB=ED

(2)若AO=6,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列方程及其解的特征:

(1) 的解為;(2)的解為

(3)的解為;…………

解答下列問(wèn)題:

(1)請(qǐng)猜想:方程的解為;

(2)請(qǐng)猜想:關(guān)于的方程的解為(a≠0);

(3)下面以解方程為例,驗(yàn)證(1)中猜想結(jié)論的正確性.

解:原方程可化為.(下面請(qǐng)大家用配方法寫(xiě)出解此方程的詳細(xì)過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC+BC=8,點(diǎn)O是斜邊AB上一點(diǎn),以O為圓心的⊙O分別與AC,BC相切于點(diǎn)D,E

1)當(dāng)AC=2時(shí),求⊙O的半徑;

2)設(shè)AC=x,⊙O的半徑為y,求yx的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由于受到手機(jī)更新?lián)Q代的影響,某手機(jī)店經(jīng)銷的甲品牌手機(jī)四月份售價(jià)比三月份每臺(tái)降價(jià)500元.如果賣(mài)出相同數(shù)量的甲品牌手機(jī),那么三月份銷售額為9萬(wàn)元,四月份銷售額只有8萬(wàn)元.

1)四月份甲品牌手機(jī)每臺(tái)售價(jià)為多少元?

2)為了提高利潤(rùn),該店計(jì)劃五月份購(gòu)進(jìn)甲品牌及乙品牌手機(jī)銷售,已知甲每臺(tái)進(jìn)價(jià)為3500元,乙每臺(tái)進(jìn)價(jià)為4000元,預(yù)算用不多于7.6萬(wàn)元且不少于7.5萬(wàn)元的資金購(gòu)進(jìn)這兩種手機(jī)共20臺(tái),問(wèn)按此預(yù)算要求,可以有幾種進(jìn)貨方案,請(qǐng)寫(xiě)出所有進(jìn)貨方案?

3)該店計(jì)劃五月在銷售甲品牌手機(jī)時(shí),在四月份售價(jià)基礎(chǔ)上每售出一臺(tái)甲品牌手機(jī)再返還顧客現(xiàn)金元,而乙品牌手機(jī)按銷售價(jià)4400元銷售,如要使(2)中所有方案獲利相同,應(yīng)取何值?

查看答案和解析>>

同步練習(xí)冊(cè)答案