精英家教網(wǎng)如圖,在銳角三角形ABC中,AD⊥BC,AD=12cm,AB=13cm,BC=14cm,則AC的長(zhǎng)為(  )
A、12cmB、13cmC、14cmD、15cm
分析:在直角三角形ABD中,根據(jù)勾股定理求得BD的長(zhǎng),進(jìn)一步求得CD的長(zhǎng),再根據(jù)勾股定理求得AC的長(zhǎng).
解答:解:在直角三角形ABD中,根據(jù)勾股定理,得
BD=
AB2-AD2
=5.
則CD=14-5=9.
在直角三角形ACD中,根據(jù)勾股定理,得
AC=
AD2+CD2
=15(cm).
故選D.
點(diǎn)評(píng):此題主要是勾股定理的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)如圖,在銳角三角形ABC中,BC=12,sinA=
34
,求此三角形外接圓半徑.
(2)若BC=a、CA=b、AB=c,sinA、sinB、sinC分別表示三個(gè)銳角的正弦值,三角形的外接圓的半徑為R,反思(1)的解題過(guò)程,請(qǐng)你猜想并寫(xiě)出一個(gè)結(jié)論.(不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在銳角三角形ABC中,AD⊥BC,AD=12,AC=13,BC=14.則AB=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在銳角三角形ABC中,AD、CE分別是邊BC、AB上的高,垂足分別是D、E,AD、CE相交于點(diǎn)O,若∠B=60°,則∠AOE的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在銳角三角形ABC中,BC=4
2
,∠ABC=45°,BD平分∠ABC,M、N分別是BD、BC上的動(dòng)點(diǎn),試求CM+MN的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案