【題目】如圖,在四邊形ABCD中,AD∥BC,AB=BC,對(duì)角線AC、BD交于點(diǎn)O,BD平分∠ABC,過(guò)點(diǎn)D作DE⊥BC,交BC的延長(zhǎng)線于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若DC=2,AC=4,求OE的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)4.
【解析】
(1)由AD∥BC,BD平分∠ABC,可得AD=AB,結(jié)合AD∥BC,可得四邊形ABCD是平行四邊形,進(jìn)而,可證明四邊形ABCD是菱形,
(2)由四邊形ABCD是菱形,可得OC=AC=2,在Rt△OCD中,由勾股定理得:OD=4,根據(jù)“在直角三角形中,斜邊上的中線等于斜邊的一半”,即可求解.
(1)證明:∵AD∥BC,
∴∠ADB=∠CBD,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AD=AB,
∵AB=BC,
∴AD=BC,
∵AD∥BC,
∴四邊形ABCD是平行四邊形,
又∵AB=BC,
∴四邊形ABCD是菱形;
(2)解:∵四邊形ABCD是菱形,
∴AC⊥BD,OB=OD,OA=OC=AC=2,
在Rt△OCD中,由勾股定理得:OD==4,
∴BD=2OD=8,
∵DE⊥BC,
∴∠DEB=90°,
∵OB=OD,
∴OE=BD=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于、兩點(diǎn),點(diǎn)在以為圓心,1為半徑的上,是的中點(diǎn),已知長(zhǎng)的最小值為1,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1為某教育網(wǎng)站一周內(nèi)連續(xù)7天日訪問(wèn)總量的條形統(tǒng)計(jì)圖,如圖2為該網(wǎng)站本周學(xué)生日訪問(wèn)量占日訪問(wèn)總量的百分比統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息完成下列填空:
(1)這一周訪問(wèn)該網(wǎng)站一共有 萬(wàn)人次;
(2)周日學(xué)生訪問(wèn)該網(wǎng)站有 萬(wàn)人次;
(3)周六到周日學(xué)生訪問(wèn)該網(wǎng)站的日平均增長(zhǎng)率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線AB與軸交于點(diǎn)C,與雙曲線交于A(3,)、B(-5,)兩點(diǎn).AD⊥軸于點(diǎn)D,BE∥軸且與軸交于點(diǎn)E.
(1)求點(diǎn)B的坐標(biāo)及直線AB的解析式;
(2)判斷四邊形CBED的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為的正方形的對(duì)角線與交于點(diǎn),將正方形沿直線折疊,點(diǎn)落在對(duì)角線上的點(diǎn)處,折痕交于點(diǎn),則( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為2a的等邊△ABC中,M是高CH所在直線上的一個(gè)動(dòng)點(diǎn),連接MB,將線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接HN.則在點(diǎn)M運(yùn)動(dòng)過(guò)程中,線段HN長(zhǎng)度的最小值是( 。
A. B. aC. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(1,0).
(1)當(dāng)b=2,c=﹣3時(shí),求二次函數(shù)的解析式及二次函數(shù)最小值;
(2)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)B(m,e),C(3﹣m,e)且對(duì)任意實(shí)數(shù)x,函數(shù)值y都不小于﹣.
①求此時(shí)二次函數(shù)的解析式;
②若次函數(shù)與y軸交于點(diǎn)D,在對(duì)稱軸上存在一點(diǎn)P,使得PA+PD有最小值,求點(diǎn)P坐標(biāo)及PA+PD的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖像經(jīng)過(guò),兩點(diǎn).
(1)求該函數(shù)的解析式;
(2)若該二次函數(shù)圖像與軸交于、兩點(diǎn),求的面積;
(3)若點(diǎn)在二次函數(shù)圖像的對(duì)稱軸上,當(dāng)周長(zhǎng)最短時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),直線與軸交于點(diǎn)與軸左側(cè)拋物線交于點(diǎn),直線與軸右側(cè)拋物線交于點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)是直線上方拋物線上一動(dòng)點(diǎn),求面積的最大值;
(3)點(diǎn)是拋物線上一動(dòng)點(diǎn),點(diǎn)是拋物線對(duì)稱軸上一動(dòng)點(diǎn),請(qǐng)直接寫(xiě)出以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com