【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交斜邊AB于點(diǎn)M,若H是AC的中點(diǎn),連接MH.

(1)求證:MH為⊙O的切線.

(2)若MH=,tan∠ABC=,求⊙O的半徑.

(3)在(2)的條件下分別過(guò)點(diǎn)A、B作⊙O的切線,兩切線交于點(diǎn)D,AD與⊙O相切于N點(diǎn),過(guò)N點(diǎn)作NQ⊥BC,垂足為E,且交⊙O于Q點(diǎn),求線段NQ的長(zhǎng)度.

【答案】(1)證明見(jiàn)解析;(2)2;(3).

【解析】

試題分析:(1)連接OH、OM,則OH為ABC的中位線,進(jìn)而可證明COH≌△MOH,∴∠HCO=HMO=90°,從而可知MH是O的切線;(2)由(1)可知MH=HC,H為AC中點(diǎn),CMH=90°,可得AC=3,再利用三角函數(shù)可求得BC=4,故半徑為2;(3)連接CN,AO,CN與AO相交于I,則AC=AN,又因?yàn)镺C=ON,可知AOCN, 利用面積可求得CI的長(zhǎng)度,設(shè)CE為x,然后利用勾股定理可求得CE的長(zhǎng)度,利用垂徑定理即可求得NQ.

試題解析: (1)連接OH、OM,H是AC的中點(diǎn),O是BC的中點(diǎn),OHAB,∴∠COH=ABC,MOH=OMB,又OB=OM,∴∠OMB=MBO,∴∠COH=MOH,又OH=OH,∴△COH≌△MOH(SAS),∴∠HCO=HMO=90°

MH是O的切線;

(2)MH、AC是O的切線,HC=MH=AC=2HC=3,在RtABC中,ACB=90°,,,BC=4,∴⊙O的半徑為2;(3)連接OA、CN、ON,OA與CN相交于點(diǎn)I,AC與AN都是O的切線,AC=AN,AO平分CAD,AOCN,AC=3,OC=2,SACO=AC·OC=AO·CI,CI=,CN=2CI=.設(shè)OE=x,由勾股定理可得:CN2CE2=ON2OE2, ,,在RtCEN中,,NQ=2EN=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P–2–3)在(

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)據(jù)6,5,7,7,9的眾數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果a=a3成立,則a可能的取值有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 無(wú)數(shù)個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn)下列的代數(shù)式,再求值:[(2x+y)2+y(x﹣y)]÷x,其中x=1,y=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,其中正確命題的個(gè)數(shù)為( )個(gè)

①Rt△ABC中,已知兩邊長(zhǎng)分別為3和4,則第三邊為5;

②有一個(gè)內(nèi)角等于其他兩個(gè)內(nèi)角和的三角形是直角三角形;

③三角形的三邊分別為a,b,c若,則∠C=90°

④在△ABC中,∠A:∠B:∠C=1:5:6,則△ABC為直角三角形。

A、1 B、2 C、3 D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3.1415精確到百分位的近似數(shù)是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)在網(wǎng)購(gòu)越來(lái)越多地成為人們的一種消費(fèi)方式,在2016年的“雙11”網(wǎng)上促銷(xiāo)活動(dòng)中天貓和淘寶的支付交易額突破120000000000元,將數(shù)字120000000000用科學(xué)記數(shù)法表示為( )
A.1.2×1012
B.1.2×1011
C.0.12×1011
D.12×1011

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用科學(xué)記數(shù)法表示0.00000022是( 。

A.0.22×106B.2.2×107C.2.2×106D.2.2×107

查看答案和解析>>

同步練習(xí)冊(cè)答案