【題目】如圖,矩形ABCD中,點P、Q分別是邊AD和BC的中點,沿過C點的直線折疊矩形ABCD使點B落在線段PQ上的點F處,折痕交AB邊于點E,交線段PQ于點G,若BC長為3,則線段FG的長為

【答案】
【解析】解:

∵△EFC由△EBC折疊而成,
∴△EFC≌△EBC,
∴∠3=∠4,∠B=∠EFC=90°,BC=CF=3,
∵Q是BC的中點,
∴CQ= BC,
∴∠1=30°,∠2=60°,
∴∠FCQ=60°,
∴∠3=∠4=30°,
在Rt△BEC中,
∵∠3=30°,
∴BE=BCtan30°=3× = ,∴EF=BE=
∵∠5是△CGF的外角,
∴∠5=∠1+∠4=60°,
∴∠5=∠2=60°,
∴△EFG是等邊三角形,
∴GF=EF= .所以答案是:
【考點精析】認真審題,首先需要了解翻折變換(折疊問題)(折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:一粒米微不足道,平時在飯桌上總會毫不經(jīng)意地掉下幾粒,甚至有些挑食的同學把整碗米飯倒掉.針對這種浪費糧食現(xiàn)象,老師組織同學們進行了實際測算,稱得粒大米約重克.

嘗試解決:

粒米重約多少克?

按我國現(xiàn)有人口億,每年天,每人每天三餐計算,若每人每餐節(jié)約粒大米,一年大約能節(jié)約大米多少千克?(結果用科學記數(shù)法表示)

假設我們把一年節(jié)約的大米賣成錢,按每千克元計算,可賣得人民幣多少元?(結果用科學記數(shù)法表示,保留到

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了解本校學生對球類運動的愛好情況,采用抽樣的方法,從乒乓球、羽毛球、籃球和排球四個方面調查了若干名學生,在還沒有繪制成功的“折線統(tǒng)計圖”與“扇形統(tǒng)計圖”中,請你根據(jù)已提供的部分信息解答下列問題.
(1)在這次調查活動中,一共調查了名學生,并請補全統(tǒng)計圖.
(2)“羽毛球”所在的扇形的圓心角是度.
(3)若該校有學生1200名,估計愛好乒乓球運動的約有多少名學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,∠B=45°,BC=10 cm,過點AAD∥BC,且點D在點A的右側.點P從點A出發(fā)沿射線AD方向以每秒1cm的速度運動,同時點Q從點C出發(fā)沿射線CB方向以每秒2cm的速度運動,在線段QC上取點E,使得QE =2cm,連結PE,設點P的運動時間為t秒.

(1)①CE= 用含t的式子表示)

PE⊥BC,BQ的長;

(2)請問是否存在t的值,使以A,B,E,P為頂點的四邊形為平行四邊形?若存在,求出t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在平面直角坐標系中,Rt△ABC的斜邊BC在x軸上,直角頂點A在y軸的正半軸上,A(0,2),B(﹣1,0).

(1)求點C的坐標;
(2)求過A、B、C三點的拋物線的解析式和對稱軸;
(3)設點P(m,n)是拋物線在第一象限部分上的點,△PAC的面積為S,求S關于m的函數(shù)關系式,并求使S最大時點P的坐標;
(4)在拋物線對稱軸上,是否存在這樣的點M,使得△MPC(P為上述(3)問中使S最大時的點)為等腰三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了更好地活躍校園文化生活,擬對本校自辦的“輝煌”校報進行改版.先從全校學生中隨機抽取一部分學生進行了一次問卷調查,題目為“你最喜愛校報的哪一個板塊”(每人只限選一項).問卷收集整理后繪制了不完整的頻數(shù)分布表和如圖扇形統(tǒng)計圖.

(1)填空:頻數(shù)分布表中a= , b=
(2)“自然探索”板塊在扇形統(tǒng)計圖中所占的圓心角的度數(shù)為;
(3)在參加此次問卷調查的學生中,最喜愛哪一個板塊的人數(shù)最多?有多少人喜歡?
(4)若全校有1500人,估計喜歡“校園新聞”板塊的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D是AC邊上一點,AD=10,DC=8.以AD為直徑的⊙O與邊BC切于點E,且AB=BE

(1)求證:AB是⊙O的切線;
(2)過D點作DF∥BC交⊙O于點F,求線段DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有兩個不透明的乒乓球盒,甲盒中裝有1個白球和2個紅球,乙盒中裝有2個白球和若干個紅球,這些小球除顏色不同外,其余均相同.若從乙盒中隨機摸出一個球,摸到紅球的概率為
(1)求乙盒中紅球的個數(shù);
(2)若先從甲盒中隨機摸出一個球,再從乙盒中隨機摸出一個球,請用樹形圖或列表法求兩次摸到不同顏色的球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為豐富學生的學習生活,某校九年級組織學生參加春游活動,所聯(lián)系的旅行收費標準如下:
春游活動結束后,該班共支付給該旅行社活動費用2800元,請問該班共有多少人參加這次春游活動?

查看答案和解析>>

同步練習冊答案