【題目】如圖,在矩形ABCD中,AB=8,AD=4,點E,F(xiàn)分別在邊CD,AB上,若四邊形AFCE是菱形,求菱形AFCE的周長.
【答案】解:∵四邊形ABCD是矩形,
∴∠D=90°,
∵四邊形AFCE是菱形,
∴AE=CE,
設(shè)DE=x,
則AE= ,CE=8﹣x,
則 =8﹣x,
解得:x=3,
將x=3代入原方程檢驗可得等式兩邊相等,
即x=3為方程的解.
則菱形的邊長為:8﹣3=5,
周長為:4×5=25,
故菱形AFCE的周長為25.
【解析】根據(jù)四邊形AFCE是菱形,可得AE=CE,然后設(shè)DE=x,表示出AE,CE的長度,根據(jù)相等求出x的值,繼而可求得菱形的邊長及周長.
【考點精析】解答此題的關(guān)鍵在于理解菱形的性質(zhì)的相關(guān)知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半,以及對矩形的性質(zhì)的理解,了解矩形的四個角都是直角,矩形的對角線相等.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為5,P為⊙O上一點,P(4,3),PC、PD為⊙O的弦,分別交y軸正半軸于E、F,且PE=PF,連CD,設(shè)直線CD為y=kx+b,則k=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一張試卷有25道選擇題,做對一題得4分,做錯一題得-1分,某同學做完了25道題,共得70分,那么他做對的題數(shù)是( )
A. 17道B. 18道C. 19道D. 20道
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知OA⊥OB,OC⊥OD.
(1)如圖①,若∠BOC=50°,求∠AOD的度數(shù).
(2)如圖②,若∠BOC=60°,求∠AOD的度數(shù).
(3)根據(jù)(1)(2)結(jié)果猜想∠AOD與∠BOC有怎樣的關(guān)系?并根據(jù)圖①說明理由.
(4)如圖②,若∠BOC∶∠AOD=7∶29,求∠COB和∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BE是AB的延長線,指出下面各組中的兩個角是由哪兩條直線被哪一條直線所截形成的?它們是什么角?
(1)∠A和∠D;
(2)∠A和∠CBA;
(3)∠C和∠CBE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場服裝部為了解服裝的銷售情況,統(tǒng)計了每位營業(yè)員在某月的銷售額(單位:萬元),并根據(jù)統(tǒng)計的這組數(shù)據(jù),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題.
(1)該商場服裝部營業(yè)員的人數(shù)為 ,圖①中m的值為 .
(2)求統(tǒng)計的這組銷售額額數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(, 為常數(shù)).
(1)當, 時,求二次函數(shù)的最小值;
(2)當時,若在函數(shù)值的情況下,只有一個自變量的值與其對應,求此時二次函數(shù)的解析式;
(3)當時,若在自變量的值滿足≤≤的情況下,與其對應的函數(shù)值的最小值為21,求此時二次函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com