【題目】如圖①,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與A,B重合),分別連接ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的“相似點(diǎn)”;如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強(qiáng)相似點(diǎn)”.
【試題再現(xiàn)】如圖②,在△ABC中,∠ACB=90°,直角頂點(diǎn)C在直線DE上,分別過(guò)點(diǎn)A,B作AD⊥DE于點(diǎn)D,BE⊥DE于點(diǎn)E.求證:△ADC∽△CEB.
【問(wèn)題探究】在圖①中,若∠A=∠B=∠DEC=40°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說(shuō)明理由.
【深入探究】如圖③,AD∥BC,DP平分∠ADC,CP平分∠BCD交DP于點(diǎn)P,過(guò)點(diǎn)P作AB⊥AD于點(diǎn)A,交BC于點(diǎn)B.
(1)請(qǐng)證明點(diǎn)P是四邊形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn).
(2)若AD=3,BC=5,試求AB的長(zhǎng).
【答案】【試題再現(xiàn)】見解析;【問(wèn)題探究】點(diǎn)E是四邊形ABCD的邊AB上的相似點(diǎn). 理由見解析;【深入探究】(1) 點(diǎn)P是四邊形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn),見解析;(2)
【解析】試題分析:【試題再現(xiàn)】易證∠BCE=∠CAD,又∠ADC=∠CEB=90°,故得△ADC∽△CEB.
【問(wèn)題探究】要證明點(diǎn)E是四邊形ABCD的AB邊上的相似點(diǎn),只要證明有一組三角形相似就行,很容易證明△ADE∽△BEC,所以問(wèn)題得解.
【深入探究】(1)分別證明△ADP∽△PDC,△BPC∽△PDC,從而△ADP∽△PDC∽△BPC,故點(diǎn)P是四邊形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn).
(2)過(guò)點(diǎn)P作PE⊥DC于點(diǎn)E,過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,則四邊形ABFD是矩形,通過(guò)證明△ADP≌△EDP和△CBP≌△CEP得DC =8,再求出CF=2,在Rt△CDF中,由勾股定理,得AB=2.
試題解析:【試題再現(xiàn)】
∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
∵AD⊥DE,
∴∠ACD+∠CAD=90°,
∴∠BCE=∠CAD,
∵∠ADC=∠CEB=90°,
∴△ADC∽△CEB.
【問(wèn)題探究】點(diǎn)E是四邊形ABCD的邊AB上的相似點(diǎn).
理由如下:
∵∠DEC=40°,
∴∠DEA+∠CEB=140°.
∵∠A=40°,
∴∠ADE+∠AED=140°,
∴∠ADE=∠CEB,
又∵∠A=∠B,
∴△ADE∽△BEC,
∴點(diǎn)E是四邊形ABCD的邊AB上的相似點(diǎn).
【深入探究】
(1)∵AD∥BC,
∴∠ADC+∠BCD=180°,
∵DP平分∠ADC,CP平分∠BCD,
∴∠CDP+∠DCP= (∠ADC+∠BCD)=90°,
∵DA⊥AB,DA∥BC,
∴CB⊥AB,
∴∠DPC=∠A=∠B=90°,
∵∠ADP=∠CDP,
∴△ADP∽△PDC,同理△BPC∽△PDC,
∴△ADP∽△PDC∽△BPC,即點(diǎn)P是四邊形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn).
(2)過(guò)點(diǎn)P作PE⊥DC于點(diǎn)E,過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,則四邊形ABFD是矩形,
∴DF=AB,
在△ADP與△EDP中,
∴△ADP≌△EDP,
∴AD=DE,
同理△CBP≌△CEP,∴BC=EC,
∴DC=AD+BC=8.
在Rt△CDF中,CF=BC-BF=BC-AD=5-3=2,
由勾股定理,得DF==2,
∴AB=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ繞點(diǎn)C旋轉(zhuǎn),在整個(gè)旋轉(zhuǎn)過(guò)程中,過(guò)點(diǎn)A作AD⊥CP,垂足為D,直線AD交CQ于E.
(1)如圖①,當(dāng)∠PCQ在∠ACB內(nèi)部時(shí),求證:AD+BE=DE;
(2)如圖②,當(dāng)CQ在∠ACB外部時(shí),則線段AD、BE與DE的關(guān)系為_____;
(3)在(1)的條件下,若CD=6,S△BCE=2S△ACD,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求1+2+22+23+…+22018的值,可令S=1+2+22+23+…+22018,則2S=2+22+23+24+…22019,因此2S﹣S=22019﹣1,即S=22019﹣1.依照以上的方法,計(jì)算出1+5+52+53+…52017的值為( )
A. 52018﹣1 B. 52019﹣1 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,小明同學(xué)在某月的日歷上圈出個(gè)數(shù),正方形的方框內(nèi)的4個(gè)數(shù)的和是32,那么第1個(gè)數(shù)是.
(2)如圖2,瑪麗也在上面的日歷上圈出個(gè)數(shù),斜框內(nèi)的4個(gè)數(shù)的和是__________(用含的代數(shù)式表示);
(3)某月有5個(gè)星期日的和是75,則這個(gè)月中最后1個(gè)星期日是__________號(hào);
(4)變式拓展:
若干個(gè)偶數(shù)按每行8個(gè)數(shù)排成如圖:
①如圖①,長(zhǎng)方形方框內(nèi)的9個(gè)數(shù)的和為__________.
②如圖②,小麗所畫的斜框內(nèi)9個(gè)數(shù),若它們的和為,則中間的數(shù)△為__________(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形是邊長(zhǎng)為4的正方形點(diǎn)P為OA邊上任意一點(diǎn)(與點(diǎn)不重合),連接CP,過(guò)點(diǎn)P作,且,過(guò)點(diǎn)M作,交于點(diǎn)聯(lián)結(jié),設(shè).
(1)當(dāng)時(shí),點(diǎn)的坐標(biāo)為( , )
(2)設(shè),求出與的函數(shù)關(guān)系式,寫出函數(shù)的定義域。
(3)在軸正半軸上存在點(diǎn),使得是等腰三角形,請(qǐng)直接寫出不少于4個(gè)符合條件的點(diǎn)的坐標(biāo)(用的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F,G,H分別是BD,BC,AC,AD的中點(diǎn),且AB=CD.下列結(jié)論:①EG⊥FH,②四邊形EFGH是矩形,③HF平分∠EHG,④EG= (BC-AD),⑤四邊形EFGH是菱形.其中正確的是________(把所有正確結(jié)論的序號(hào)都選上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一數(shù)軸上存在兩動(dòng)點(diǎn),當(dāng)?shù)谝淮蜗嘤龊螅俣榷甲優(yōu)樵瓉?lái)的兩倍,第二次相遇后又都能恢復(fù)到原來(lái)的速度,則稱這條數(shù)軸為魔幻數(shù)軸.
如圖,已知一魔幻數(shù)軸上有A,O,B三點(diǎn),其中A,O對(duì)應(yīng)的數(shù)分別為﹣10,0,AB為47個(gè)單位長(zhǎng)度,甲,乙分別從A,O兩點(diǎn)同時(shí)出發(fā),沿?cái)?shù)軸正方向同向而行,甲的速度為3個(gè)單位/秒,乙的速度為1個(gè)單位/秒,甲到達(dá)點(diǎn)B后以當(dāng)時(shí)速度立即返回,當(dāng)甲回到點(diǎn)A時(shí),甲、乙同時(shí)停止運(yùn)動(dòng).
問(wèn):(1)點(diǎn)B對(duì)應(yīng)的數(shù)為 ,甲出發(fā) 秒后追上乙(即第一次相遇)
(2)當(dāng)甲到達(dá)點(diǎn)B立即返回后第二次與乙相遇,求出相遇點(diǎn)在數(shù)軸上表示的數(shù)是多少?
(3)甲、乙同時(shí)出發(fā)多少秒后,二者相距2個(gè)單位長(zhǎng)度?(請(qǐng)直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠AOB=90°,∠OAB=30°,反比例函數(shù)y1=的圖象經(jīng)過(guò)點(diǎn)A,反比例函數(shù)y2=的圖象經(jīng)過(guò)點(diǎn)B,則下列關(guān)于m,n的關(guān)系正確的是( )
A. m=-3n B. m=-n C. m=-n D. m=n
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),過(guò)點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點(diǎn),AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com