【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DEBC于點E.

(1)試判斷DE與⊙O的位置關系,并說明理由;

(2)過點DDFAB于點F,若BE=3,DF=3,求圖中陰影部分的面積.

【答案】(1)DE與⊙O相切,理由見解析;(2)陰影部分的面積為2π﹣

【解析】(1)直接利用角平分線的定義結合平行線的判定與性質得出∠DEB=∠EDO=90°,進而得出答案;

(2)利用勾股定理結合扇形面積求法分別分析得出答案.

(1)DE與⊙O相切,

理由:連接DO,

∵DO=BO,

∴∠ODB=∠OBD,

∵∠ABC的平分線交⊙O于點D,

∴∠EBD=∠DBO,

∴∠EBD=∠BDO,

∴DO∥BE,

∵DE⊥BC,

∴∠DEB=∠EDO=90°,

∴DE與⊙O相切;

(2)∵∠ABC的平分線交⊙O于點D,DE⊥BE,DF⊥AB,

∴DE=DF=3,

∵BE=3

∴BD==6,

∵sin∠DBF=

∴∠DBA=30°,

∴∠DOF=60°,

∴sin60°=,

∴DO=2,

則FO=

故圖中陰影部分的面積為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,點O是△ABC內的一點,BOC=130°.

(1)求證:OB=DC;

(2)求DCO的大。

(3)設AOB=α,那么當α為多少度時,△COD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,四邊形OABC的邊OA、OC分別在x軸、y軸的正半軸上,頂點在B點的拋物線交x軸于點A、D,交y軸于點E,連接AB、AEBE.已知tan∠CBE=,A30),D﹣1,0),E0,3).

1)求拋物線的解析式及頂點B的坐標;

2)求證:CB△ABE外接圓的切線;

3)試探究坐標軸上是否存在一點P,使以D、E、P為頂點的三角形與△ABE相似,若存在,直接寫出點P的坐標;若不存在,請說明理由;

4)設△AOE沿x軸正方向平移t個單位長度(0t≤3)時,△AOE△ABE重疊部分的面積為s,求st之間的函數(shù)關系式,并指出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一種密碼,將英文26個字舟ab,c,z(不論大小寫)依次對應1,23,26,這26個自然數(shù)(見表格),當明碼對應的序號x為奇數(shù)時,密碼對應的序號,當明碼對應的序號x為偶數(shù)時,密碼對應的序號+12,按下述規(guī)定,將明碼“l(fā)ove”譯成密碼是(

A.loveB.rkwuC.sdriD.rewj

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:平行四邊形ABCD,求作菱形AECF,使點E、點F分別在BCAD邊上

下面是小明設計的尺規(guī)作圖過程.

作法:如圖

連接AC;

分別以A、C為圓心,大于AC的長為半徑作弧,兩弧交于M、N兩點;

連接MN,分別與BC、ADAC交于E、F、O三點;

連接AE、CF

四邊形AECF即為所求

根據(jù)小明設計的尺規(guī)作圖過程

1)使用直尺和圓規(guī),補全圖形:(保留作圖痕跡)

2)完成下面的證明

證明∵AM= ,AN= ,

MNAC的垂直平分線。

)(填推理的依據(jù))

EFAC,OA=OC

∴平行四邊形ABCD

ADBC

∴∠FAO=ECO

FAOECO

∴△FAO≌△ECO

OE=OF

又∵OA=OC

∴四邊形AECF是平行四邊形

)(填推理依據(jù))

EFAC

∴四邊形AECF是菱形

)(填推理依據(jù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對給定的一張矩形紙片ABCD進行如下操作:先沿CE折疊,使點B落在CD邊上(如圖①),再沿CH折疊,這時發(fā)現(xiàn)點E恰好與點D重合(如圖②

(1)根據(jù)以上操作和發(fā)現(xiàn),求的值;

(2)將該矩形紙片展開.

①如圖③,折疊該矩形紙片,使點C與點H重合,折痕與AB相交于點P,再將該矩形紙片展開.求證:∠HPC=90°;

②不借助工具,利用圖④探索一種新的折疊方法,找出與圖③中位置相同的P點,要求只有一條折痕,且點P在折痕上,請簡要說明折疊方法.(不需說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】西安市管理部門對十一國慶放假期間七天本市某景區(qū)客流變化量進行了不完全統(tǒng)計,數(shù)據(jù)如下(用正數(shù)表示客流量比前一天增加,用負數(shù)表示客流量比前一天下降):

日期

1

2

3

4

5

6

7

變化(萬人)

請通過計算解決以下問題:

1)請判斷這7天中,哪一天人數(shù)最多?哪一天人數(shù)最少?

(2)與103日相比,105日的客流量是上升了還是下降了?

3)如圖930日的客流量為1.5萬人,據(jù)統(tǒng)計平均每人每天消費200元,請問該景區(qū)在十一七天國慶假期的總收入為多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知點M,N的坐標分別為(﹣1,2),(2,1),若拋物線y=ax2﹣x+2(a≠0)與線段MN有兩個不同的交點,則a的取值范圍是( 。

A. a≤﹣1≤a< B. ≤a<

C. a≤a> D. a≤﹣1a≥

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地電話撥號入網有兩種收費方式,用戶可以任選其一.

計時制:0.05/;

包月制:50/(限一部個人住宅電話上網).

此外,每一種上網方式都得加收通信費0.02/.

(1)某用戶某月上網的時間為x小時,請你分別寫出兩種收費方式下該用戶應該支付的費用.

(2)若某用戶估計一個月內上網的時間為20小時,你認為采用哪種方式較為合算?

查看答案和解析>>

同步練習冊答案