【題目】如圖,△ABC是邊長(zhǎng)為4的等邊三角形,D為AB邊的中點(diǎn),以CD為直徑畫圓,則圖中陰影部分的面積為(結(jié)果保留π).

【答案】2.5 ﹣π
【解析】解:過點(diǎn)O作OE⊥AC于點(diǎn)E,連接FO,MO,

∵△ABC是邊長(zhǎng)為4的等邊三角形,D為AB邊的中點(diǎn),以CD為直徑畫圓,

∴CD⊥AB,∠ACD=∠BCD=30°,AC=BC=AB=4,

∴∠FOD=∠DOM=60°,AD=BD=2,

∴CD=2 ,則CO=DO=

∴EO= ,EC=EF= ,則FC=3,

∴SCOF=SCOM= × ×3=

S扇形OFM= =π,

SABC= ×CD×4=4 ,

∴圖中影陰部分的面積為:4 ﹣2× ﹣π=2.5 ﹣π.

故答案為:2.5 ﹣π.

根據(jù)等邊三角形的性質(zhì)以及勾股定理得出△COF,△COM,△ABC以及扇形FOM的面積,進(jìn)而得出陰影部分的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,BD平分∠ABC,且ADBDEAC的中點(diǎn),AD6cmBD8cm,BC16cm,則DE的長(zhǎng)為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線MN與直線PQ垂直相交于O,點(diǎn)A在直線PQ上運(yùn)動(dòng),點(diǎn)B在直線MN上運(yùn)動(dòng).

(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠AEB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明變化的情況;若不發(fā)生變化,試求出∠AEB的大。

(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠CED的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說明理由;若不發(fā)生變化,試求出其值.

(3)如圖3,延長(zhǎng)BAG,已知∠BAO、OAG的角平分線與∠BOQ的角平分線及延長(zhǎng)線相交于E、F,在AEF中,如果有一個(gè)角是另一個(gè)角的3倍,試求∠ABO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=x+k與y= (k為常數(shù),k≠0)的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的一條邊與另一條邊的反向延長(zhǎng)線組成的角,叫做三角形的外角。如圖,點(diǎn)DBC延長(zhǎng)線上一點(diǎn),則∠ACD為△ABC的一個(gè)外角。

求證:∠ACD=A+B

證明:過點(diǎn)CCEAB(過直線外一點(diǎn) )

∴∠B=

A=

∵∠ACD=1+2

∴∠ACD= +B(等量代換)

應(yīng)用:如圖是一個(gè)五角星,請(qǐng)利用上述結(jié)論求

A+B+C+D+E的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過小明還有一個(gè)“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).
(1)如果小明第一題不使用“求助”,那么小明答對(duì)第一道題的概率是
(2)如果小明將“求助”留在第二題使用,請(qǐng)用樹狀圖或者列表來分析小明順利通關(guān)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示,(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形).

(1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;

(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點(diǎn)B2,C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的外角∠ACD的平分線CP與內(nèi)角∠ABC的平分線BP交于點(diǎn)P,若∠BPC40°,則∠CAP=(  )

A. 40°B. 45°C. 50°D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于兩點(diǎn)A(﹣4,0)和B(1,0),與y軸交于點(diǎn)C(0,2),動(dòng)點(diǎn)D沿△ABC的邊AB以每秒2個(gè)單位長(zhǎng)度的速度由起點(diǎn)A向終點(diǎn)B運(yùn)動(dòng),過點(diǎn)D作x軸的垂線,交△ABC的另一邊于點(diǎn)E,將△ADE沿DE折疊,使點(diǎn)A落在點(diǎn)F處,設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t秒.

(1)求拋物線的解析式和對(duì)稱軸;
(2)是否存在某一時(shí)刻t,使得△EFC為直角三角形?若存在,求出t的值;若不存在,請(qǐng)說明理由;
(3)設(shè)四邊形DECO的面積為s,求s關(guān)于t的函數(shù)表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案