【題目】某市數(shù)學(xué)調(diào)研小組對老師在講評試卷中學(xué)生參與的深度與廣度進(jìn)行評價(jià)調(diào)查,其評價(jià)項(xiàng)目為“主動質(zhì)疑”、“獨(dú)立思考”、“專注聽講”、“講解題目”四項(xiàng),該調(diào)研小組隨機(jī)抽取了若干名初中七年級學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價(jià)中,一共抽查了______名學(xué)生;
(2)請將頻數(shù)分布直方圖補(bǔ)充完整;
(3)如果全市有40000名七年級學(xué)生,那么在試卷評講課中,“獨(dú)立思考”的七年級學(xué)生約有多少人?
【答案】(1)560;(2)詳見解析;(3)在試卷評講課中,“獨(dú)立思考”的七年級學(xué)生約有12000人.
【解析】
(1)由專注聽講的人數(shù)及其所占百分比可得總?cè)藬?shù);
(2)根據(jù)各項(xiàng)目人數(shù)之和等于總?cè)藬?shù)可得講解題目對應(yīng)的人數(shù),從而補(bǔ)全圖形;
(3)利用樣本估計(jì)總體思想求解可得.
(1)在這次評價(jià)中,一共抽查學(xué)生為:224÷40%=560人,
(2)“講解題目”的人數(shù)是:(人). 作圖如下:
(3)(人)
故在試卷評講課中,“獨(dú)立思考”的七年級學(xué)生約有12000人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個長方形操場的四角都設(shè)計(jì)一塊半徑相同的四分之一圓形的花壇,若圓形的半徑為r米,廣場的長為a米,寬為b米.
(1)請列式表示操場空地的面積;
(2)若休閑廣場的長為 50米,寬為20米,圓形花壇的半徑為 3米,求操場空地的面積.(π取 3.14,計(jì)算結(jié)果保留 0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,點(diǎn)P關(guān)于OA、OB的對稱點(diǎn)分別是P1,P2,線段P1P2分別交OA、OB于D、C,P1P2=6cm,則△PCD的周長為( )
A.3cmB.6cmC.12cmD.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知M的橫坐標(biāo)是的平方根,縱坐標(biāo)是2,且點(diǎn)M到y軸的距離是到x軸的距離的3倍。
(1)求a的值;
(2)求點(diǎn)M的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,D是AC的中點(diǎn),過點(diǎn)A作直線,過點(diǎn)D的直線EF交BC的延長線于點(diǎn)E,交直線l于點(diǎn)F,連接AE、CF.
(1)求證:①≌;②;
(2)若,試判斷四邊形AFCE是什么特殊四邊形,并證明你的結(jié)論;
(3)若,探索:是否存在這樣的能使四邊形AFCE成為正方形?若能,求出滿足條件時(shí)的的度數(shù);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文化用品商店用元采購一批書包,上市后發(fā)現(xiàn)供不應(yīng)求,很快銷售完了.商店又去采購第二批同樣款式的書包,進(jìn)貨單價(jià)比第一次高元,商店用了元,所購數(shù)量是第一次的倍.
(1)求第一批采購的書包的單價(jià)是多少元?
(2)若商店按售價(jià)為每個書包元,銷售完這兩批書包,總共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F為垂足,則下列四個結(jié)論:(1)AD上任意一點(diǎn)到點(diǎn)C、D的距離相等;(2)AD上任意一點(diǎn)到AB、AC的距離相等;(3)AD⊥BC且BD=CD;(4)∠BDE=∠CDF,其中正確的個數(shù)是( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點(diǎn)C,BD平分∠ABF,且交AE于點(diǎn)D,連接CD.
(1)求證:四邊形ABCD是菱形;
(2)若∠ADB=30°,BD=12,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠ABC=25°,以點(diǎn)C為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)后得到△A′B′C,且點(diǎn)A在邊A′B′上,則旋轉(zhuǎn)角的度數(shù)為( 。
A. 65°B. 60°C. 50°D. 40°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com