【題目】某城市規(guī)定:出租車起步價(jià)允許行駛的最遠(yuǎn)路程為3千米,超過3千米的部分按每千米另行收費(fèi),甲說:“我乘這種出租車走了9千米,付了15元”:乙說:“我乘這種出租車走了25千米,付了39元”請你算一算這種出租車的起步價(jià)是多少元?超過3千米后,每千米的車費(fèi)是多少元?

【答案】這種出租車的起步價(jià)是6元,超過3千米后,每千米的車費(fèi)是1.5元.

【解析】

設(shè)這種出租車的起步價(jià)是x元,超過3千米后,每千米的車費(fèi)是y元,根據(jù)乘車9千米,需付15元;乘車25千米,需付39,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論.

設(shè)這種出租車的起步價(jià)是x元,超過3千米后,每千米的車費(fèi)是y元,

根據(jù)題意得:

解得:

答:這種出租車的起步價(jià)是6元,超過3千米后,每千米的車費(fèi)是1.5元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的角平分線CD、BE相交于F,∠A90°EGBC,且CGEGG,下列結(jié)論:①∠CEG2DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFBCGE.其中正確的結(jié)論是( )

A. ②③B. ①②④C. ①③④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知MB=ND,MBA=NDC,下列條件中不能判定ABMCDN的是(

A. M=N B. AM=CN C. AB=CD D. AMCN

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,∠AOC=30°,將一直角三角板 (∠M=30°)的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OMOC都在直線AB的上方,將如圖中的三角板繞點(diǎn)O以每秒3°的速度沿順時(shí)針方向旋轉(zhuǎn)一周。

(1)幾秒后ONOC重合?

(2)如圖,經(jīng)過t秒后,MNAB,求此時(shí)t的值。

(3)若三角板在轉(zhuǎn)動(dòng)的同時(shí),射線OC也繞O點(diǎn)以每秒6°的速度沿順時(shí)針方向旋轉(zhuǎn)一周,那么經(jīng)過多長時(shí)間OCOM重合?請畫圖并說明理由。

4)在(3)的條件下,求經(jīng)過多長時(shí)間OC平分∠MOB?請畫圖并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△PQR在直角坐標(biāo)系中的位置如圖所示:

(1) 求出△PQR的面積;

(2) 畫出△P′Q′R′,使△P′Q′R′△PQR關(guān)于y軸對稱,寫出點(diǎn)P′、Q′、R′的坐標(biāo);

(3)連接PP′,QQ′,判斷四邊形QQ′P′P的形狀,求出四邊形QQ′P′P的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+1經(jīng)過A(﹣1,0),B(1,1)兩點(diǎn).

(1)求該拋物線的解析式;
(2)閱讀理解:
在同一平面直角坐標(biāo)系中,直線l1:y=k1x+b1(k1 , b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2 , b2為常數(shù),且k2≠0),若l1⊥l2 , 則k1k2=﹣1.
解決問題:
①若直線y=3x﹣1與直線y=mx+2互相垂直,求m的值;
②拋物線上是否存在點(diǎn)P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)M是拋物線上一動(dòng)點(diǎn),且在直線AB的上方(不與A,B重合),求點(diǎn)M到直線AB的距離的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連AD.

(1)求證:AD=AN;
(2)若AB=4 ,ON=1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AOB內(nèi)部有三條射線,OE平分AODOC平分BOD

1)若AOB=90°,求EOC的度數(shù);

2)若AOB,求EOC的度數(shù);

3)如果將題中“平分”的條件改為EOA=AODDOC=DOBDOEDOC=43,AOB=90°,求EOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請回答下列問題:

(1)這次被調(diào)查的學(xué)生共有人;
(2)請你將條形統(tǒng)計(jì)圖補(bǔ)充完成;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

查看答案和解析>>

同步練習(xí)冊答案