如圖所示,已知圓心角的度數(shù)為,則圓周角的度數(shù)是(  )
A.B.
C.D.
D
設點E是優(yōu)弧AB上的一點,連接EA,EB,根據(jù)同弧所對的圓周角是圓心角的一半可求得∠E的度數(shù),再根據(jù)圓內(nèi)接四邊形的對角互補即可得到∠ACB的度數(shù)
設點E是優(yōu)弧AB上的一點,連接EA,EB
∵∠AOB=100°
∴∠E="1" 2 ∠AOB=50°
∴∠ACB=180°-∠E=130°.
故選D
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知是⊙的直徑,是⊙的切線,是切點,與⊙交于點.

(1)如圖①,若,,求的長(結果保留根號);
(2)如圖②,若的中點,求證:直線是⊙的切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,外接圓的直徑,,垂足為點,的平分線交于點,連接。

(1) 求證:
(2) 請判斷,,三點是否在以為圓心,以為半徑的圓上?并說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在中,AB=10,AC=8,BC=6,經(jīng)過點C且與邊AB相切的動圓與CA,CB分別相交于點P,Q,則線段PQ長度的最小值是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,M是⊙O上的一點,MN⊥AB,垂足為N,P,Q分別為弧AM、弧BM上一點(不與端點重合)如果∠MNP=∠MNQ,給出下列結論:
①∠1=∠2;②∠P+∠Q=180°;③∠Q=∠PMN;④MN2=PN•QN;⑤PM=QM
其中結論正確的序號是( )
A.①②③B.①③④C.①③⑤D.④⑤

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在平面直角坐標系中,⊙Oˊ與兩坐標軸分別交于A、B、C、D四點,已知
A(6,0),C(-2,0)。則點B的坐標為          

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

下圖是輸水管的切面,陰影部分是有水部分,其中水面寬16㎝,最深地方的高度是4㎝,求這個圓形切面的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,F是CE的中點,AB=10,CD=8.如果以O為圓心、AF長為半徑作小⊙O,那么點E與小⊙O的位置關系為(    ) 
A.點E在小⊙O外B.點E在小⊙O上C.點E在小⊙O內(nèi)D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知兩圓的半徑分別為3cm和4cm,這兩圓的圓心距為1cm,則這兩個圓的位置關系是    ▲   

查看答案和解析>>

同步練習冊答案