【題目】如圖1,在直角坐標(biāo)系xoy中,直線l:y=kx+b交x軸,y軸于點(diǎn)E,F(xiàn),點(diǎn)B的坐標(biāo)是(2,2),過點(diǎn)B分別作x軸、y軸的垂線,垂足為A、C,點(diǎn)D是線段CO上的動點(diǎn),以BD為對稱軸,作與△BCD或軸對稱的△BC′D.
(1)當(dāng)∠CBD=15°時,求點(diǎn)C′的坐標(biāo).
(2)當(dāng)圖1中的直線l經(jīng)過點(diǎn)A,且k=﹣ 時(如圖2),求點(diǎn)D由C到O的運(yùn)動過程中,線段BC′掃過的圖形與△OAF重疊部分的面積.
(3)當(dāng)圖1中的直線l經(jīng)過點(diǎn)D,C′時(如圖3),以DE為對稱軸,作于△DOE或軸對稱的△DO′E,連結(jié)O′C,O′O,問是否存在點(diǎn)D,使得△DO′E與△CO′O相似?若存在,求出k、b的值;若不存在,請說明理由.
【答案】
(1)
解:∵△CBD≌△C′BD,
∴∠CBD=∠C′BD=15°,C′B=CB=2,
∴∠CBC′=30°,
如圖1,作C′H⊥BC于H,則C′H=1,HB= ,
∴CH=2﹣ ,
∴點(diǎn)C′的坐標(biāo)為:(2﹣ ,1)
(2)
解:如圖2,∵A(2,0),k=﹣ ,
∴代入直線AF的解析式為:y=﹣ x+b,
∴b= ,
則直線AF的解析式為:y=﹣ x+ ,
∴∠OAF=30°,∠BAF=60°,
∵在點(diǎn)D由C到O的運(yùn)動過程中,BC′掃過的圖形是扇形,
∴當(dāng)D與O重合時,點(diǎn)C′與A重合,
且BC′掃過的圖形與△OAF重合部分是弓形,
當(dāng)C′在直線y=﹣ x+ 上時,BC′=BC=AB,
∴△ABC′是等邊三角形,這時∠ABC′=60°,
∴重疊部分的面積是: ﹣ ×22= π﹣
(3)
解:如圖3,設(shè)OO′與DE交于點(diǎn)M,則O′M=OM,OO′⊥DE,
若△DO′E與△COO′相似,則△COO′必是Rt△,
在點(diǎn)D由C到O的運(yùn)動過程中,△COO′中顯然只能∠CO′O=90°,
∴CO′∥DE,
∴CD=OD=1,
∴b=1,
連接BE,由軸對稱性可知C′D=CD,BC′=BC=BA,
∠BC′E=∠BCD=∠BAE=90°,
在Rt△BAE和Rt△BC′E中
∵ ,
∴Rt△BAE≌Rt△BC′E(HL),
∴AE=C′E,
∴DE=DC′+C′E=DC+AE,
設(shè)OE=x,則AE=2﹣x,
∴DE=DC+AE=3﹣x,
由勾股定理得:x2+1=(3﹣x)2,
解得:x=,
∵D(0,1),E( ,0),
∴ k+1=0,
解得:k=﹣ ,
∴存在點(diǎn)D,使△DO′E與△COO′相似,這時k=﹣ ,b=1.
【解析】(1)利用翻折變換的性質(zhì)得出∠CBD=∠C′BD=15°,C′B=CB=2,進(jìn)而得出CH的長,進(jìn)而得出答案;(2)首先求出直線AF的解析式,進(jìn)而得出當(dāng)D與O重合時,點(diǎn)C′與A重合,且BC′掃過的圖形與△OAF重合部分是弓形,求出即可;(3)根據(jù)題意得出△DO′E與△COO′相似,則△COO′必是Rt△,進(jìn)而得出Rt△BAE≌Rt△BC′E(HL),再利用勾股定理求出EO的長進(jìn)而得出答案.
【考點(diǎn)精析】通過靈活運(yùn)用確定一次函數(shù)的表達(dá)式和勾股定理的概念,掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,把橫縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“整點(diǎn)”.
(1)直接寫出函數(shù)y= 圖象上的所有“整點(diǎn)”A1 , A2 , A3 , …的坐標(biāo);
(2)在(1)的所有整點(diǎn)中任取兩點(diǎn),用樹狀圖或列表法求出這兩點(diǎn)關(guān)于原點(diǎn)對稱的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A,B分別在x軸,y軸上,點(diǎn)A的坐標(biāo)為(﹣1,0),∠ABO=30°,線段PQ的端點(diǎn)P從點(diǎn)O出發(fā),沿△OBA的邊按O→B→A→O運(yùn)動一周,同時另一端點(diǎn)Q隨之在x軸的非負(fù)半軸上運(yùn)動,如果PQ= ,那么當(dāng)點(diǎn)P運(yùn)動一周時,點(diǎn)Q運(yùn)動的總路程為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)(2y﹣z):(z+2x):y=1:5:2,則(3y﹣z):(2z﹣x):(x+3y)=( )
A.1:5:7
B.3:5:7
C.3:5:8
D.2:5:8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別為(8,0)、(0,2 ),C是AB的中點(diǎn),過點(diǎn)C作y軸的垂線,垂足為D,動點(diǎn)P從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動,過點(diǎn)P作x軸的垂線,垂足為E,連接BP、EC.當(dāng)BP所在直線與EC所在直線第一次垂直時,點(diǎn)P的坐標(biāo)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于坐標(biāo)平面內(nèi)的點(diǎn),現(xiàn)將該點(diǎn)向右平移1個單位,再向上平移2的單位,這種點(diǎn)的運(yùn)動稱為點(diǎn)A的斜平移,如點(diǎn)P(2,3)經(jīng)1次斜平移后的點(diǎn)的坐標(biāo)為(3,5),已知點(diǎn)A的坐標(biāo)為(1,0).
(1)分別寫出點(diǎn)A經(jīng)1次,2次斜平移后得到的點(diǎn)的坐標(biāo).
(2)如圖,點(diǎn)M是直線l上的一點(diǎn),點(diǎn)A關(guān)于點(diǎn)M的對稱點(diǎn)的點(diǎn)B,點(diǎn)B關(guān)于直線l的對稱軸為點(diǎn)C.
①若A、B、C三點(diǎn)不在同一條直線上,判斷△ABC是否是直角三角形?請說明理由.
②若點(diǎn)B由點(diǎn)A經(jīng)n次斜平移后得到,且點(diǎn)C的坐標(biāo)為(7,6),求出點(diǎn)B的坐標(biāo)及n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過對蘇科版八(下)教材一道習(xí)題的探索研究,我們知道:一次函數(shù)y=x﹣1的圖象可以由正比例函數(shù)y=x的圖象向右平移1個單位長度得到類似的,函數(shù) 的圖象是由反比例函數(shù) 的圖象向左平移2個單位長度得到.靈活運(yùn)用這一知識解決問題.如圖,已知反比例函數(shù) 的圖象C與正比例函數(shù)y=ax(a≠0)的圖象l相交于點(diǎn)A(2,2)和點(diǎn)B.
(1)寫出點(diǎn)B的坐標(biāo),并求a的值;
(2)將函數(shù) 的圖象和直線AB同時向右平移n(n>0)個單位長度,得到的圖象分別記為C′和l′,已知圖象C′經(jīng)過點(diǎn)M(2,4).
①求n的值;
②分別寫出平移后的兩個圖象C′和l′對應(yīng)的函數(shù)關(guān)系式;
③直接寫出不等式 的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)公民的節(jié)約意識,合理利用天然氣資源,某市自1月1日起對市區(qū)民用管道天然氣價格進(jìn)行調(diào)整,實行階梯式氣價,調(diào)整后的收費(fèi)價格如表所示:
每月用氣量 | 單價(元/m3) |
不超出75m3的部分 | 2.5 |
超出75m3不超出125m3的部分 | a |
超出125m3的部分 | a+0.25 |
(1)若甲用戶3月份的用氣量為60m3 , 則應(yīng)繳費(fèi)元;
(2)若調(diào)價后每月支出的燃?xì)赓M(fèi)為y(元),每月的用氣量為x(m3),y與x之間的關(guān)系如圖所示,求a的值及y與x之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,若乙用戶2、3月份共用氣175m3(3月份用氣量低于2月份用氣量),共繳費(fèi)455元,乙用戶2、3月份的用氣量各是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com