【題目】如圖,在中,,點,分別為,上一點,,連接,,.
(1)如圖1,若,,求的長;
(2)如圖2,連接交于點,點為上一點,連接交于點,若,求證:;
(3)在(2)的條件下,若,直接寫出線段,,的等量關(guān)系.
【答案】(1)9-(2)見解析(3)AD+MC= AC,理由見解析.
【解析】
(1)過點D作DF⊥BE,根據(jù)等邊三角形的的性質(zhì)求出DF的長,再利用勾股定理求出CF,即可求出EC的長;
(2)作AG=AB, 得到△ABG為等邊三角形,先證明△ABE≌△AGM,再證明△AGC≌△CED,得到CG=DE,再根據(jù)MG=BE=DE即可求解;
(3)作AH⊥BC,根據(jù)∠ACB=45°,∠BAC=75°,得到∠BAH=30°,∠HAC=45°設(shè)BH=x,
根據(jù)含30°的直角三角形與等腰直角三角形的性質(zhì)分別表示出AD,MC,AC,即可求解.
(1)∵,=
∴△BDE為等邊三角形,
作DF⊥BE,
∴EF=BE=
∴DF=
∵CD=
∴CF==9
∴EC=CF-EF=9-;
(2)作AG=AB,∵∠B=60°,
∴△ABG為等邊三角形,
∵AE=AM,∠ABE=∠AGM=60°,
∴△ABE≌△AGM,
∴∠ADC=60°+∠2=∠DAC=60°+∠1
故∠1=∠2,
∵∠AGC=120°=∠CED,AC=CD
∴△AGC≌△CED,
∴CG=DE,
又MG=BE=DE,
∴MC=MG+CG=2DE.
(3)∵∠ACB=45°,∠BAC=75°,
∴∠1=∠2=15°,
作AH⊥BC,∴∠BAH=30°,∠HAC=45°
設(shè)BH=x,
∴AB=2x,AH=x=CH
∴AC==x,BC=(+1)x,
故CG=BC-BG=(-1)x,BD=CG=(-1)x
AD=AB-BD=(3-)x
CM=(2-x)x
∴AD+MC=(+1)x=AC
即AD+MC= AC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑500米,先到終點的人原地休息.已知甲先出發(fā)2秒,在跑步過程中,甲.乙兩人的距離y(米)與乙出發(fā)的時間t(秒)之間的關(guān)系如圖所示,給出以下結(jié)論:①100秒時乙到達(dá)終點;②a=8;③b=92④c=125,其中正確的是( 。
A.②③B.①②③C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國慶期間,魯能巴蜀中學(xué)團(tuán)委決定組織同學(xué)們觀看電影《我和我的祖國》,《中國機(jī)長》和《攀登者》,小明準(zhǔn)備到電影院提前購票.已知三部電影單價之和為100元,計劃購買三部電影票總共不超過135張;其中《攀登者》票價為30元,計劃購買35張,《中國機(jī)長》至少購買25張,《我和我的祖國》數(shù)量不少于《中國機(jī)長》的2倍粗心的小明在做預(yù)算時將《我和我的祖國》和《中國機(jī)長》的票價弄反了,結(jié)果實際購買三種電影票時的總價比預(yù)算多了112元,若三部電影票的單價均為整數(shù),則小明實際購買這三部電影票最多需要花費_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校對初2021級甲、乙兩班各60名學(xué)生進(jìn)行知識測試(滿分60分),測試完成后分別抽取了12份成績,整理分析過程如下,請補(bǔ)充完整.
(收集數(shù)據(jù))
甲班12名學(xué)生測試成績統(tǒng)計如下:
45,59,60,38,57,53,52,58,60,50,43,49
乙班12名學(xué)生測試成績統(tǒng)計如下:
35,55,46,39,54,47,43,57,42,59,60,47
(整理數(shù)據(jù))
按如下分?jǐn)?shù)段整理,描述這兩組樣本數(shù)據(jù)
組別頻數(shù) | |||||
甲 | 0 | 1 | 3 | 3 | 5 |
乙 | 2 | 2 | 3 | 1 | 4 |
(分析數(shù)據(jù))
兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)、方差如下表所示:
班級 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
甲 | 52.5 | ||
乙 | 48.7 | 47 |
(1) , ;
(2)若規(guī)定得分在40分及以上為合格,請估計乙班60名學(xué)生中知識測試合格的學(xué)生有多少人?
(3)你認(rèn)為哪個班的學(xué)生知識測試的整體水平較好,請說明一條理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墻壁處有一盞燈(如圖),小明站在處測得他的影長與身長相等都為,小明向墻壁走到處發(fā)現(xiàn)影子剛好落在A點,則燈泡與地面的距離________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小兒是同班同學(xué),被分到了同一個學(xué)習(xí)小組,在一次數(shù)學(xué)活動課上,他們各自用一張面積為的正方形紙片制作了一副七巧板,合作完成了如圖所示的作品.請計算圖中打圈部分的面積是( )
少壯不努力,老大徒傷悲
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點,與軸交于點,已知點.
(1)求出點,點的坐標(biāo).
(2)是直線上一動點,且和的面積相等,求點坐標(biāo).
(3)如圖2,平移直線,分別交軸,軸于交于點,,過點作平行于軸的直線,在直線上是否存在點,使得是等腰直角三角形?若存在,請直接寫出所有符合條件的點的坐標(biāo).
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠C=90°.
(1)用直尺和圓規(guī)作⊙O,使它經(jīng)過A、B、D三點(保留作圖痕跡);
(2)點C是否在⊙O上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)計劃為新生配備如圖1所示的折疊椅.圖2中的正方形ACBD是折疊椅撐開后的側(cè)面示意圖,其中椅腿AB和CD的長相等,O是它們的中點.若正方形ACBD的面積為[9(2x-3y)2+12(2x-3y) (x+4y) +4(x+4y)2](米2)(x>y),你能求出這種折疊椅張開后的高度嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com