【題目】如圖,在四邊形ABCD中,CD∥AB,AD=BC.已知A(﹣2,0),B(6,0),D(0,3),函數(shù)y=(x>0)的圖象G經(jīng)過點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo)和函數(shù)y=(x>0)的表達(dá)式;
(2)將四邊形ABCD向上平移2個(gè)單位得到四邊形A'B'C'D',問點(diǎn)B'是否落在圖象G上?
【答案】(1)C(4,3),反比例函數(shù)的解析式y=;(2)點(diǎn)B′恰好落在雙曲線上.
【解析】
(1)過C作CE⊥AB,由題意得到四邊形ABCD為等腰梯形,進(jìn)而得到三角形AOD與三角形BEC全等,得到CE=OD=3,OA=BE=2,由AB﹣AO﹣BE求出OE的長(zhǎng),確定出C坐標(biāo),代入反比例解析式求出k的值即可;
(2)由平移規(guī)律確定出B′的坐標(biāo),代入反比例解析式檢驗(yàn)即可.
(1)過C作CE⊥AB.
∵DC∥AB,AD=BC,∴四邊形ABCD為等腰梯形,∴∠A=∠B,DO=CE=3,CD=OE,∴△ADO≌△BCE,∴BE=OA=2.
∵AB=8,∴OE=AB﹣OA﹣BE=8﹣2﹣2=4,∴C(4,3),把C(4,3)代入反比例解析式得:k=12,則反比例解析式為y;
(2)由平移得:平移后B的坐標(biāo)為(6,2),把x=6代入反比例得:y=2,則平移后點(diǎn)落在該雙曲線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=,D為AC上一點(diǎn),DE⊥AB于點(diǎn)E,AC=12,BC=5.
(1)求的值;
(2)當(dāng)時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線L:y=x2+x-6與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),并與y軸相交于點(diǎn)C.
(1)求A、B、C三點(diǎn)的坐標(biāo),并求出△ABC的面積;
(2)將拋物線向左或向右平移,得到拋物線L,且L與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),并與y軸交于點(diǎn)C,要使△ABC和△ABC的面積相等,求所有滿足條件的拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的周長(zhǎng)為36,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)為( 。
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=ax2+bx+c(a≠0)和一次函數(shù)y2=kx+n(k≠0)的圖象如圖所示,下面有四個(gè)推斷:
①二次函數(shù)y1有最大值;
②二次函數(shù)y1的圖象關(guān)于直線x=﹣1對(duì)稱
③當(dāng)x=﹣2時(shí),二次函數(shù)y1的值大于0
④過動(dòng)點(diǎn)P(m,0)且垂直于x軸的直線與y1,y2的圖象的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),m的取值范圍是m<﹣3或m>﹣1.
以上推斷正確的是( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ ABC中,∠ACB=90°,AD平分∠BAC, 作AD的垂直平分線EF交AD于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F,交AB于點(diǎn)G,交AC于點(diǎn)H.
(1)依題意補(bǔ)全圖形;
(2)求證:∠BAD=∠BFG;
(3)試猜想AB,FB和FD之間的數(shù)量關(guān)系并進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y=相交于點(diǎn)A(m,3),B(-6,n),與x軸交于點(diǎn)C.
(1)求直線y=kx+b(k≠0)的解析式;
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com