【題目】今年6月份,某果農(nóng)收獲荔枝30噸,香蕉13噸,現(xiàn)計劃租用甲、乙兩種貨車共10輛將這批水果全部運往港口,已知一輛甲種貨車可裝荔枝和香蕉共5噸,且一輛甲種貨車可裝的荔枝重量(單位:噸)是其可裝的香蕉重量的4倍,一輛乙種貨車可裝荔枝香蕉各2噸;
(1)一輛甲種貨車可裝載荔枝、香蕉各多少噸?
(2)該果農(nóng)安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計出來;
(3)若甲種貨車每輛要付運輸費2000元,乙種貨車每輛要付運輸費1300元,則該果農(nóng)應(yīng)選擇哪種方案?使運費最少?最少運費是多少元?
【答案】(1)一輛甲種貨車可裝載荔枝4噸,香蕉1噸;(2)共有三種方案,方案1:安排5輛甲種貨車,5輛乙種貨車;方案2:安排6輛甲種貨車,4輛乙種貨車;方案3:安排7輛甲種貨車,3輛乙種貨車.(3)該果農(nóng)應(yīng)選方案1,使運費最少,最少運費是16500元.
【解析】
(1)可設(shè)一輛甲種貨車可裝載荔枝x噸,香蕉y噸,根據(jù)“一輛車總共裝5噸”,有,根據(jù)“可裝的荔枝重量是其可裝的香蕉重量的4倍”,有,聯(lián)立解二元一次方程組即可.
(2)可以設(shè)安排m輛甲種貨車,安排(10﹣m)輛乙種貨車,必須使兩種車裝載荔枝總量大于等于30噸,則有,裝載香蕉總量大于等于13噸,則有,聯(lián)立解一元一次不等式組,注意只取整數(shù).
(3)根據(jù)第(2)題得出的方案逐一計算,取最小費用即可.
(1)設(shè)一輛甲種貨車可裝載荔枝x噸,香蕉y噸,
依題意,得:,
解得:.
答:一輛甲種貨車可裝載荔枝4噸,香蕉1噸.
(2)設(shè)安排m輛甲種貨車,則安排(10﹣m)輛乙種貨車,
依題意,得:,
解得:5≤m≤7.
∵m為整數(shù),
∴m=5,6,7,
∴共有三種方案,方案1:安排5輛甲種貨車,5輛乙種貨車;方案2:安排6輛甲種貨車,4輛乙種貨車;方案3:安排7輛甲種貨車,3輛乙種貨車.
(3)方案1所需費用2000×5+1300×5=16500(元);
方案2所需費用2000×6+1300×4=17200(元);
方案3所需費用2000×7+1300×3=17900(元).
∵16500<17200<17900,
∴該果農(nóng)應(yīng)選方案1,使運費最少,最少運費是16500元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),交y軸的正半軸于點C,其頂點為M,MH⊥x軸于點H,MA交y軸于點N,sin∠MOH=.
(1)求此拋物線的函數(shù)表達式;
(2)過H的直線與y軸相交于點P,過O,M兩點作直線PH的垂線,垂足分別為E,F,若 時,求點P的坐標(biāo);
(3)將(1)中的拋物線沿y軸折疊,使點A落在點D處,連接MD,Q為(1)中的拋物線上的一動點,直線NQ交x軸于點G,當(dāng)Q點在拋物線上運動時,是否存在點Q,使△ANG 與△ADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售A、B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進價和售價如下表所示:
教學(xué)設(shè)備 | A | B |
進價(萬元/套) | 3 | 2.4 |
售價(萬元/套) | 3.3 | 2.8 |
該商場計劃購進兩種教學(xué)設(shè)備若干套,共需132萬元,全部銷售后可獲毛利潤18萬元.
(1)該商場計劃購進A、B兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過市場調(diào)查,該商場決定在原計劃的基礎(chǔ)上,減少A種設(shè)備的購進數(shù)量,增加B種設(shè)備的購進數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍.若用于購進這兩種教學(xué)設(shè)備的總資金不超過138萬元,則A種設(shè)備購進數(shù)量最多減少多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點C按逆時針方向旋轉(zhuǎn)得到△A'B'C',此時點A'恰好在AB邊上,則點B'與點B之間的距離為( 。
A. 12 B. 6 C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EF(E在BC上,F在AC上)折疊,點C與點O恰好重合,則∠OEC為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料,并完成相應(yīng)的任務(wù):
在數(shù)學(xué)中,利用圖形在變化過程中的不變性質(zhì),常?梢哉业浇鉀Q問題的辦消去.著名美籍匈牙利數(shù)學(xué)家波利亞在他所著的《數(shù)學(xué)的發(fā)現(xiàn)》一書中有這樣一個例子:請問如何在一個三角形ABC的AC和BC兩邊上分別取一點X和Y,使得AX=BY=XY.(如圖)解決這個問題的操作步驟如下:
第一步,在CA上作出一點D,使得CD=CB,連接BD.第二步,在CB上取一點Y',作Y'Z∥CA,交BD于點Z',并在AB上取一點A',使Z'A'=Y'Z'.第三步,過點A作AZ∥A'Z',交BD于點Z.第四步,過點Z作ZY∥AC,交BC于點Y,再過點Y作YX∥ZA,交AC于點X.
則有AX=BY=XY.
下面是該結(jié)論的部分證明:
證明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,
又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.
∴ .
同理可得.∴.
∵Z'A'=Y'Z',∴ZA=YZ.
在數(shù)學(xué)中,利用圖形在變化過程中的不變性質(zhì),常常可以找到解決問題的辦消去.著名美籍匈牙利數(shù)學(xué)家波利亞在他所著的《數(shù)學(xué)的發(fā)現(xiàn)》一書中有這樣一個例子:請問如何在一個三角形ABC的AC和BC兩邊上分別取一點X和Y,使得AX=BY=XY.(如圖)解決這個問題的操作步驟如下:
第一步,在CA上作出一點D,使得CD=CB,連接BD.第二步,在CB上取一點Y',作Y'Z∥CA,交BD于點Z',并在AB上取一點A',使Z'A'=Y'Z'.第三步,過點A作AZ∥A'Z',交BD于點Z.第四步,過點Z作ZY∥AC,交BC于點Y,再過點Y作YX∥ZA,交AC于點X.
則有AX=BY=XY.
下面是該結(jié)論的部分證明:
證明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,
又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.
∴ .
同理可得.∴.
∵Z'A'=Y'Z',∴ZA=YZ.
任務(wù):(1)請根據(jù)上面的操作步驟及部分證明過程,判斷四邊形AXYZ的形狀,并加以證明;
(2)請再仔細閱讀上面的操作步驟,在(1)的基礎(chǔ)上完成AX=BY=XY的證明過程;
(3)上述解決問題的過程中,通過作平行線把四邊形BA'Z'Y'放大得到四邊形BAZY,從而確定了點Z,Y的位置,這里運用了下面一種圖形的變化是 .
A.平移 B.旋轉(zhuǎn) C.軸對稱 D.位似
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】溫州市處于東南沿海,夏季經(jīng)常遭受臺風(fēng)襲擊,一次,溫州氣象局測得臺風(fēng)中心在溫州市的正西方向300千米的處,以每小時千米的速度向東偏南的方向移動,距臺風(fēng)中心200千米的范圍是受臺風(fēng)嚴(yán)重影響的區(qū)域,試問:
(1)臺風(fēng)中心在移動過程中離溫州市最近距離是多少千米?
(2)溫州市是否受臺風(fēng)影響?若不會受到,請說明理由;若會受到,求出溫州市受臺風(fēng)嚴(yán)重影響的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,∠BAC=90°,D、E分別是AB、AC的中點,將△ADE繞點A按順時針方向旋轉(zhuǎn)一個角度α(0°<α<90°)得到△AD'E′,連接BD′、CE′,如圖1.
(1)求證:BD′=CE';
(2)如圖2,當(dāng)α=60°時,設(shè)AB與D′E′交于點F,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com