【題目】如圖,RtABO的頂點(diǎn)A是反比例函數(shù)y=與一次函數(shù)y=﹣x﹣(k+1)的圖象在第二象限的交點(diǎn),ABx軸于B,且SABO=

(1)直接寫出這兩個(gè)函數(shù)的關(guān)系式;

(2)求△AOC的面積;

(3)根據(jù)圖象直接寫出:當(dāng)x為何值時(shí),反比例函數(shù)的值小于一次函數(shù)的值.

【答案】(1)y=;y=﹣x+2;(2)4;(3)x<﹣10<x<3時(shí);

【解析】

(1)先根據(jù)反比例函數(shù)的圖象所在的象限判斷出k的符號(hào),在由ABO的面積求出k的值,進(jìn)而可得出兩個(gè)函數(shù)的解析式;

(2)把兩函數(shù)的解析式組成方程組,求出x、y的值,即可得出A、C兩點(diǎn)的坐標(biāo),再由一次函數(shù)的解析式求出直線與x軸的交點(diǎn),由SAOC=SAOD+SCOD進(jìn)行解答即可.

(3)直接根據(jù)一次函數(shù)與反比例函數(shù)的交點(diǎn)坐標(biāo)求出一次函數(shù)的值大于反比例函數(shù)的值x的取值范圍即可.

解:(1)設(shè)點(diǎn)A(x,y),則xy=k

SAOB=

(﹣x)×y=

k=﹣3

∴反比例函數(shù)解析式y=

一次函數(shù)解析式y=﹣x+2

(2)由

解得,

A(﹣1,3)、C(3,﹣1)

∵一次函數(shù)y=﹣x+2y軸的交點(diǎn)坐標(biāo)為(0,2)

SAOC=×2×(3+1)=4

(3)由圖象可得:當(dāng)x<﹣10<x<3時(shí),一次函數(shù)圖象在反比例圖象的上方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在等腰直角三角形DBC中,BDC=90°,BF平分DBC,與CD相交于點(diǎn)F,延長BD到A,使DA=DF,

(1)試說明FBD≌△ACD;

(2)延長BF交AC于E,且BEAC,試說明CE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】武勝縣白坪飛龍鄉(xiāng)村旅游度假村橙海陽光景點(diǎn)組織輛汽車裝運(yùn)完三種臍橙共噸到外地銷售.按計(jì)劃,輛汽車都要裝運(yùn),每輛汽車只能裝運(yùn)同一種臍橙,且必須裝滿.根據(jù)下表提供的信息,解答以下問題:

臍橙品種

每輛汽車運(yùn)載量(噸)

每噸臍橙獲得(元)

設(shè)裝運(yùn)種臍橙的車輛數(shù)為,裝運(yùn)種臍橙的車輛數(shù)為,求之間的函數(shù)關(guān)系式;

如果裝運(yùn)每種臍橙的車輛數(shù)都不少于輛,那么車輛的安排方案有幾種?

設(shè)銷售利潤為(元),求之間的函數(shù)關(guān)系式;若要使此次銷售獲利最大,應(yīng)采用哪種安排方案?并求出最大利潤的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將直線y=x向下平移b個(gè)單位長度后得到直線l,l與反比例函數(shù)y=(k>0,x>0)的圖象相交于點(diǎn)A,與x軸相交于點(diǎn)B,則OA2﹣OB2=10,則k的值是( 。

A. 5 B. 10 C. 15 D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,、的角平分線交點(diǎn),外角平分線交點(diǎn),則______,_____,聯(lián)結(jié),則______,點(diǎn)____(選填“在”、“不在”或“不一定在)直線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖 1,△ABC 和△ADE 都是等腰直角三角形,∠BAC 和∠DAE 是直角,連接BD,CE 相交于點(diǎn) F,則∠BFC= °

2)如圖 2,△ABC 和△ADE 都是等邊三角形,連接 BD,CE 相交于點(diǎn) F,則∠BFC= °

3)如圖 3,△ABC 和△ADE 都是等腰三角形,AB=AC,AD=AE,且∠BAC=DAE,連接 BD,CE相交于點(diǎn) F,請(qǐng)猜想∠BFC 與∠BAC 有怎樣的大小關(guān)系?請(qǐng)證明你的猜想

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,梯形的頂點(diǎn)、在反比例函數(shù)圖像上,,上底邊在直線上,下底邊軸于,點(diǎn)的縱坐標(biāo)是1.

1)求反比例函數(shù)的解析式;

2)求四邊形的面積;

3)若將點(diǎn)的坐標(biāo)改為,且,其他條件不變,探究四邊形的面積;

4)若將點(diǎn)的坐標(biāo)改為,且,點(diǎn)的縱坐標(biāo)改為,且,其他條件不變,直接寫出四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個(gè)小正方形的邊長是1個(gè)單位長度)

(1)畫出△ABC向下平移4個(gè)單位,再向左平移1個(gè)單位得到的△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);

(2)作出△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)90°后得到的△A2B2C2,并直接寫出C2點(diǎn)的坐標(biāo);

(3)求△A2B2C2面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AEABC的角平分線,DAE上一點(diǎn),∠DBE=∠DCE.求證:BECE

查看答案和解析>>

同步練習(xí)冊(cè)答案