【題目】如圖是某公園里一處矩形風(fēng)景欣賞區(qū)ABCD,長AB50米,寬BC25米,為方便游人觀賞,公園特意修建了如圖所示的小路(圖中非陰影部分),小路的寬均為1米,那小明沿著小路的中間,從出口A到出口B所走的路線(圖中虛線)長為___________

【答案】98

【解析】根據(jù)已知可以得出此圖形可以分為橫向與縱向分析,橫向距離等于AB,縱向距離等于(AD-1)×2,求出即可.

解答:解:利用已知可以得出此圖形可以分為橫向與縱向分析,橫向距離等于AB,縱向距離等于(AD-1)×2,
∴圖是某公園里一處矩形風(fēng)景欣賞區(qū)ABCD,長AB=50,寬BC=25,為50+(25-1)×2=98,
故答案為:98.

“點(diǎn)睛”此題主要考查了生活中的平移現(xiàn)象,根據(jù)已知得出所走路徑是解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知|x|=3,|y|=2,且xy0,則x+y的值等于( 。

A. 5或﹣5 B. 1或﹣1 C. 5或1 D. ﹣5或﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地去年財(cái)政收入取得重大突破,地方公共財(cái)政收入用四舍五入取近似值后為27.39億元,那么這個(gè)數(shù)值(

A. 精確到億位 B. 精確到百分位

C. 精確到千萬位 D. 精確到百萬位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10位學(xué)生分別購買如下尺碼的鞋子:20,20,21,22,22,22,22,23,23,24(單位:cm).這組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)三個(gè)指標(biāo)中鞋店老板最喜歡的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

問題:如圖所示,在正方形ABCD和BEFG中,點(diǎn)A,B,E在同一直線上,P是線段DF中點(diǎn),連接PG,PC.

探究:當(dāng)PG與PC的夾角為90°時(shí),平行四邊形BEFG是正方形.

小聰同學(xué)的思路是:首先可以證明四邊形BEFG是矩形,然后延長GP交DC于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過推理可以探索出問題答案.

請你參考小聰同學(xué)的思路,探究并解決這個(gè)問題.

(1)求證:四邊形BEFG是矩形;

(2)求證:PG與PC的夾角為90°時(shí),四邊形BEFG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB=45°,點(diǎn)P在∠AOB內(nèi)部,點(diǎn)P1與點(diǎn)P關(guān)于OA對稱,點(diǎn)P2與點(diǎn)P關(guān)于OB對稱,則△P1O P2是(
A.含30°角的直角三角形
B.頂角是30°的等腰三角形
C.等邊三角形
D.等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c是△ABC的三邊長,若方程(ac)x22bxac=0有兩個(gè)相等的實(shí)數(shù)根,則△ABC __________三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式計(jì)算正確的是 (   )

A. 6a+a=6a2 B. -2a+5b=3ab C. 4m2n-2mn2=2mn D. 3ab2-5b2a=-2ab2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由地理知識可知:各地的氣溫受海拔高度的影響,海拔每升高100米,氣溫就下降0.6℃,現(xiàn)已知重慶的海拔高度約為260米,峨眉山的海拔高度約為3099米,則當(dāng)重慶氣溫為28℃時(shí),峨眉山山頂?shù)臍鉁貫槎嗌?(精確到個(gè)位)

查看答案和解析>>

同步練習(xí)冊答案