精英家教網 > 初中數學 > 題目詳情
在四邊形ABCD中,AB=CD,P、Q分別是AD、BC的中點,M、N分別是對角線AC、BD的中點,證明:PQ⊥MN.
分析:作輔助線連接PN、QN、QM、PM,顯然PN平行且等于
1
2
AB,MQ平行且等于
1
2
AB,PM平行且等于
1
2
DC,NQ平行且等于
1
2
DC,因為AB=CD,所以PN=NQ=QM=PM,容易證明四邊形PNQM是菱形,即可得出結論.
解答:精英家教網證明:如圖,連接PN、QN、QM、PM,
顯然PN平行且等于
1
2
AB,MQ平行且等于
1
2
AB,
PM平行且等于
1
2
DC,NQ平行且等于
1
2
DC,
∵AB=CD,
∴PN=NQ=QM=PM,
∴四邊形PNQM是菱形,
∴PQ⊥MN.
點評:本題考查了菱形的判定和性質,難度較大,關鍵根據題意巧妙地作出輔助線.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

11、如圖所示,在四邊形ABCD中,BD是它的一條對角線,若∠1=∠2,∠A=55°16′,則∠ADC=
124°44′

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在四邊形ABCD中,AD=4cm,CD=3cm,AD⊥CD,AB=13cm,BC=12cm,求四邊形的面積.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

6、在四邊形ABCD中,AD∥BC,AB=DC,則四邊形ABCD是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

在四邊形ABCD中,∠A,∠B,∠C,∠D的度數之比為2:3:4:3,則∠C的外角等于(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在四邊形ABCD中,AD=BC,P是對角線BD的中點,M是邊DC的中點,N是邊AB的中點.△MPN是什么三角形?為什么?

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷