【題目】如圖,四邊形ABCD 是⊙O的內接四邊形,∠ABC=2∠D,連接OA,OC,AC

(1)求∠OCA的度數(shù)
(2)如果OE AC于F,且OC= , 求AC的長

【答案】
(1)解:∵四邊形ABCD 是⊙O的內接四邊形,∴∠ABC+ ∠D=180°.

∵∠ABC=2∠D∴∠D+2∠D=180°,∴∠D=60°,∴∠AOC=2∠D=120°.

∵OA=OC,∴∠OCA=∠OAC=30°


(2)解:在Rt△OCF中,OC= ,∠OCA=30°, ∴OF= OC= ,F(xiàn)C= OF=3.

∵OE AC, ∴AC=2CF=6


【解析】(1)利用圓內接四邊形的性質和圓周角定理,可求出∠D=60°,∠AOC=120度,進而求出OCA=∠OAC=30°;(2)利用垂徑定理,30度角的性質,可求出FC,進而求出AC=2CF=6.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若實數(shù)a,b,c滿足|a-|+=+

1)求abc;

2)若滿足上式的a,c為等腰三角形的兩邊,求這個等腰三角形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學學生步行到郊外旅行,七年級班學生組成前隊,步行速度為4千米小時,七班的學生組成后隊,速度為6千米小時;前隊出發(fā)1小時后,后隊才出發(fā),同時后隊派一名聯(lián)絡員騎自行車在兩隊之間不間斷地來回聯(lián)絡,他騎車的速度為10千米小時.

后隊追上前隊需要多長時間?

后隊追上前隊的時間內,聯(lián)絡員走的路程是多少?

七年級班出發(fā)多少小時后兩隊相距2千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小華和小峰是兩名自行車愛好者,小華的騎行速度比小峰快兩人準備在周長為250米的賽道上進行一場比賽若小華在小峰出發(fā)15秒之后再出發(fā),圖中、分別表示兩人騎行路程與時間的關系.

小峰的速度為______秒,他出發(fā)______米后,小華才出發(fā);

小華為了能和小峰同時到達終點,設計了兩個方案,方案一:加快騎行速度;方案二:比預定時間提前出發(fā).

______“A“”“B“代表方案一;

若采用方案二,小華必須在小峰出發(fā)多久后開始騎行?求出此時小華騎行的路程與時間的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。

A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某年級共有300名學生,為了解該年級學生在兩個體育項目上的達標情況,進行了抽樣調査.過程如下,請補充完整.

收集數(shù)據從該年級隨機抽取30名學生進行測試,測試成績(百分制)如下:

項目 78 86 74 81 75 76 87 49 74 91 75 79 81 71 74 81 86 69 83 77 82 85 92 95 58 54 63 67 82 74

項目 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 100 70 40 84 86 92 96 53 57 63 68 81 75

整理、描述數(shù)據

項目的頻數(shù)分布表

分組

劃記

頻數(shù)

1

2

2

8

5

(說明:成績80分及以上為優(yōu)秀,6079分為基本達標,59分以下為不合格)

根據以上信息,回答下列問題:

1)補全統(tǒng)計圖、統(tǒng)計表;

2)在此次測試中,成績更好的項目是__________,理由是__________;

3)假設該年級學生都參加此次測試,估計項目和項目成績都是優(yōu)秀的人數(shù)最多為________人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B在線段AC上(BC>AB),在線段AC同側作正方形ABMN及正方形BCEF,連接AMME、EA得到△AME.當AB=1時,△AME的面積記為S1;當AB=2時,△AME的面積記為S2;當AB=3時,△AME的面積記為S3;則S2020S2019=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線MD相交于點D,DE⊥AB交AB的延長線于點E,DF⊥AC于點F,現(xiàn)有下列結論:①DE=DF;②DE+DF=AD;③DM平分∠ADF;④AB+AC=2AE.其中,正確的有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線y= +bx+c與x軸只有一個交點M,與平行于x軸的直線l交于A、B兩點,若AB=3,則點M到直線l的距離為( ).

A.
B.
C.2
D.

查看答案和解析>>

同步練習冊答案