【題目】如圖,在△ABC中,點(diǎn)D,E分別是邊AB,AC的中點(diǎn),設(shè) = =
(1)求向量 (用向量 , 的式子表示).
(2)在圖中作出向量 在向量 方向上的分向量(不要求寫作法,但要指出所作圖中表示結(jié)論的向量).

【答案】
(1)解:∵在△ABC中, = , =

= = ﹣=

又∵E是邊AC的中點(diǎn),

=

故答案是:


(2)解:如圖,

過點(diǎn)E作EM∥AB交BC于點(diǎn)M.

、 即為向量 在向量 , 方向上的分向量


【解析】(1)首先利用平面向量三角形法則求得 ,然后由“E是邊AC的中點(diǎn)”來求向量 ;(2)利用平行四邊形法則,即可求得向量 方向上的分向量.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知球O的半徑為1,A,B是球面上的兩點(diǎn),且AB= ,若點(diǎn)P是球面上任意一點(diǎn),則 的取值范圍是(
A.[ ]
B.[ , ]
C.[0, ]
D.[0, ]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,E,F(xiàn)分別是AB,BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM.
(2)當(dāng)AE=2時(shí),求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表所示:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

從上表可知,下列說法中,錯(cuò)誤的是(
A.拋物線于x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣2,0)
B.拋物線與y軸的交點(diǎn)坐標(biāo)為(0,6)
C.拋物線的對(duì)稱軸是直線x=0
D.拋物線在對(duì)稱軸左側(cè)部分是上升的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知向量 ,
(1)求做:向量 分別在 , 方向上的分向量 :(不要求寫作法,但要在圖中明確標(biāo)出向量 ).
(2)如果點(diǎn)A是線段OD的中點(diǎn),聯(lián)結(jié)AE、交線段OP于點(diǎn)Q,設(shè) = = ,那么試用 表示向量 , (請(qǐng)直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC= .點(diǎn)E為線段BD上任意一點(diǎn)(點(diǎn)E與點(diǎn)B,D不重合),過點(diǎn)E作EF∥CD,與BC相交于點(diǎn)F,連接CE.設(shè)BE=x,y=

(1)求BD的長;
(2)如果BC=BD,當(dāng)△DCE是等腰三角形時(shí),求x的值;
(3)如果BC=10,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于非零向量 、 下列條件中,不能判定 是平行向量的是(
A. ,
B. +3 = =3
C. =﹣3
D.| |=3| |

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代典籍《莊子天下篇》中曾說過一句話:“一尺之棰,日取其半,萬世不竭”,現(xiàn)有一根長為1尺的木桿,第1次截取其長度的一半,第2次截取其第1次剩下長度的一半,第3次截取其第2次剩下長度的一半,如此反復(fù),則第99次截取后,此木桿剩下的長度為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由5個(gè)大小相同的小正方體拼成的幾何體如圖所示,則下列說法正確的是( 。

A.主視圖的面積最小
B.左視圖的面積最小
C.俯視圖的面積最小
D.三個(gè)視圖的面積相等

查看答案和解析>>

同步練習(xí)冊(cè)答案