【題目】如圖,平面直角坐標系xoyA(﹣4,6),B(﹣1,2),C(﹣4,1).

1)作出△ABC關于直線x1對稱的圖形△A1B1C1并寫出△A1B1C1各頂點的坐標;

2)將△A1B1C1向左平移2個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標

【答案】1)圖詳見解析,,,;(2)圖詳見解析,,

【解析】

1)分別作出三頂點關于直線x=1的對稱點,再順次連接即可得;

2)將△A1B1C1的三個頂點分別向左平移,再順次連接即可得.

解:(1)如圖所示,△A1B1C1即為所求,A166),B13,2),C·6,1);

2)如圖所示,△A2B2C2即為所求,A24,6),B21,2),C24,1);

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某一工程隊,在工程招標時,接到甲、乙兩個工程隊的投標書,施工一天,需付甲工程隊工程款1.2萬元,乙工程隊工程款0.5萬元. 工程領導小組根據(jù)甲、乙兩隊的投標書測算,有如下方案:

1)甲隊單獨完成這項工程剛好如期完成;

2)乙隊單獨完成這項工程要比規(guī)定日期多用6天;

3)若甲、乙兩隊合作3天,余下的工程由乙隊單獨做也正好如期完成;

試問:在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:

4a+b=0;9a+c3b;8a+7b+2c0x﹣1時,y的值隨x值的增大而增大;當函數(shù)值y<0時,自變量x的取值范圍是x<-1x>5.

其中正確的結論有( 。

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線y= x+2與x軸,y軸分別相交于A、B兩點,與反比例函數(shù)y= (x>0)的圖象相交于點C(2,3).點P是反比例函數(shù)圖象上一點,作PE垂直x軸于E,若以P、O、E為頂點的三角形與AOB相似,則點P的坐標是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一張三角形紙片沿DE折疊,當點A落在四邊形BCED的內部時,∠A1、2之間的關系是(  )

A. A1+2 B. 2A1+2

C. 3A1+2 D. 4A1+2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1所示,等腰直角三角形ABC中,∠BAC=90O,AB=AC,直線MN經(jīng)過點ABDMN于點D,CEMN于點E.

(1)試判斷線段DE、BD、CE之間的數(shù)量關系,并說明理由;

(2)當直線MN運動到如圖2所示位置時,其余條件不變,判斷線段DE、BD、CE之間的數(shù)量關系。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n0)的圖象在第二象限交于點C.CDx軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個交點為E,求CDE的面積;

(3)直接寫出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一架云梯AB長25米,如圖那樣斜靠在一面墻AC上,這時云梯底端B離墻底C的距離BC為7米.

(1)這云梯的頂端距地面AC有多高?

(2)如果云梯的頂端A下滑了4米,那么它的底部B在水平方向向右滑動了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB切⊙O于A、B兩點,CD切⊙O于點E并垂直PB于D,交PA于C,若⊙O的半徑為2,△PCD的周長等于12,則△PCD的面積是( ).

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

同步練習冊答案