【題目】如圖,A點(diǎn)的坐標(biāo)為(0,3),B點(diǎn)的坐標(biāo)為(-3.0),D為x軸上的一個(gè)動(dòng)點(diǎn),AE⊥AD,且AE=AD,連接BE交y軸于點(diǎn)M
(1)若D點(diǎn)的坐標(biāo)為(-5.0),求E點(diǎn)的坐標(biāo):
(2)求證:M為BE的中點(diǎn)
(3)當(dāng)D點(diǎn)在x軸上運(yùn)動(dòng)時(shí),探索:為定值
【答案】(1)E(3,-2);(2)詳見解析;(3)
【解析】
(1) 過E點(diǎn)作EF⊥y軸交y軸于F點(diǎn),先證明△AOD≌△EFA(AAS),根據(jù)全等三角形的性質(zhì)即可得到E點(diǎn)的坐標(biāo);
(2)先把D點(diǎn)的位置畫出來,再證明△AOD≌△EFA(AAS),再根據(jù)全等三角形的性質(zhì)證明△BOM≌△EFM(AAS),即可證明M為BE的中點(diǎn);
(3)從(1)(2)的信息可知得到,再結(jié)合即可得到的比值為定值;
(1) 過E點(diǎn)作EF⊥y軸交y軸于F點(diǎn)
∵AD⊥AE , EF⊥AF
∠AOD=∠AFE=90°
∵∠DAO+∠EAF=90°
∠EAF+∠AEF=90°
∴∠DAO=∠AEF
在△AOD和△EFA中
△AOD≌△EFA(AAS)
EF=OA=3 AF=OD=5
OF=AF-OA=5-3=2
E(3,-2)
(2)
D點(diǎn)在以上3個(gè)位置,
根據(jù)題意知道:AE=AD,,
又∵ ,
∴
∴△AOD≌△EFA(AAS)
∴OB=EF ∠BOM=∠EMF=90°
∠BOM=∠EMF
∴△BOM≌△EFM(AAS)
BM=EM=BE
(3) 根據(jù)(2)可知,D點(diǎn)在可以在3個(gè)位置,
當(dāng)D點(diǎn)如下圖的位置時(shí),過D作直線a⊥x軸與D,過A作AG垂直直線a于G,
由(2)知△BOM≌△EFM(AAS),
∴EF=OB,
又由(1)知△AOD≌△EFA(AAS)
即:EF=OA =OB,AF=OD
∴ ,
又∵
∴=,
當(dāng)D在另外兩個(gè)位置時(shí),同理可證得=;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CO1是△ABC的中線,過點(diǎn)O1作O1E1∥AC交BC于點(diǎn)E1,連接AE1交CO1于點(diǎn)O2;過點(diǎn)O2作O2E2∥AC交BC于點(diǎn)E2,連接AE2交CO1于點(diǎn)O3;過點(diǎn)O3作O3E3∥AC交BC于點(diǎn)E3,…,如此繼續(xù),可以依次得到點(diǎn)O4,O5,…,On和點(diǎn)E4,E5,…,En.則OnEn= AC.(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水利部門為加強(qiáng)防汛工作,決定對(duì)某水庫(kù)大壩進(jìn)行加固,大壩的橫截面是梯形ABCD,如圖所示,已知迎水坡面AB的長(zhǎng)為16米,∠B=60°,背水坡面CD的長(zhǎng)為16米,加固后大壩的橫截面為梯形ABED,CE的長(zhǎng)為8米.
(1)已知需加固的大壩長(zhǎng)為150米,求需要填土石方多少立方米?
(2)求加固后的大壩背水坡面DE的坡度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七(1)班同學(xué)為了解2017年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)的部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理.請(qǐng)解答以下問題:
月均用水量 | 頻數(shù)(戶數(shù)) | 百分比 |
6 | ||
16 | ||
10 | ||
4 | ||
2 |
(1)請(qǐng)將下列頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;
(2)求該小區(qū)月均用水量不超過的家庭占被調(diào)查家庭總數(shù)的百分比;
(3)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計(jì)該小區(qū)月均用水量超過的家庭數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于給定的兩點(diǎn),,若存在點(diǎn),使得的面積等于1,即,則稱點(diǎn)為線段的“單位面積點(diǎn)”.
解答下列問題:
如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為.
(1)在點(diǎn),,,中,線段的“單位面積點(diǎn)”是______.
(2)已知點(diǎn),,點(diǎn),是線段的兩個(gè)“單位面積點(diǎn)”,點(diǎn)在的延長(zhǎng)線上,若,直接寫出點(diǎn)縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三角形(記作)在方格中,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,三個(gè)頂點(diǎn)的坐標(biāo)分別是,,,先將向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到.
(1)在圖中畫出;
(2)點(diǎn),的坐標(biāo)分別為______、______;
(3)若軸有一點(diǎn),使與面積相等,求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B,C,D為矩形的四個(gè)頂點(diǎn),AB=16 cm,AD=6 cm,動(dòng)點(diǎn)P,Q分別從點(diǎn)A,C同時(shí)出發(fā),點(diǎn)P以3 cm/s的速度向點(diǎn)B移動(dòng),一直到點(diǎn)B為止,點(diǎn)Q以2 cm/s的速度向點(diǎn)D移動(dòng),當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).問:
(1)P,Q兩點(diǎn)從開始出發(fā)多長(zhǎng)時(shí)間時(shí),四邊形PBCQ的面積是33 cm2?
(2)P,Q兩點(diǎn)從開始出發(fā)多長(zhǎng)時(shí)間時(shí),點(diǎn)P與點(diǎn)Q之間的距離是10 cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖是一個(gè)正方形紙片,如果將正方形紙片繞點(diǎn)逆時(shí)針旋轉(zhuǎn)角度,得到正方形,交于點(diǎn),的延長(zhǎng)線交于點(diǎn),連接、.
(1)求證:平分;
(2)直接寫出線段、、之間的數(shù)量關(guān)系;
(3)連接,,,,試探究在旋轉(zhuǎn)過程中,四邊形能否成為矩形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),將一個(gè)長(zhǎng)為4a,寬為2b的長(zhǎng)方形,沿圖中虛線均勻分成4個(gè)小長(zhǎng)方形,然后按圖(2)形狀拼成一個(gè)正方形.
①圖(2)中的空白部分的邊長(zhǎng)是多少?(用含a,b的式子表示)
②觀察圖(2),用等式表示出,ab和的數(shù)量關(guān)系;
(2)如圖所示,在△ABC與△DCB中,AC與BD相交于點(diǎn)E,且∠A=∠D,AB=DC.求證:△ABE≌△DCE;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com