科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax 2-2ax-3a(a<0)與x軸交于A、B兩點(點A在點B的左側(cè)),經(jīng)過點A的直線l:y=kx+b與y軸負(fù)半軸交于點C,與拋物線的另一個交點為D,且CD=4AC.
(1)直接寫出點A的坐標(biāo),并求直線l的函數(shù)表達(dá)式(其中k、b用含a的式子表示);
(2)點E是直線l上方的拋物線上的動點,若△ACE的面積的最大值為 ,求a的值;
(3)設(shè)P是拋物線的對稱軸上的一點,點Q在拋物線上,以點A、D、P、Q為頂點的四邊形能否成為矩形?若能,求出點P的坐標(biāo);若不能,請說明理由.
![]() | ![]() | ||
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在3x3的正方形網(wǎng)格中有四個格點A, B, C, D,,以其中一點為原點,網(wǎng)格線所在直線為坐標(biāo)軸,建立平面直角坐標(biāo)系,使其余三個點中存在兩個點關(guān)于一條坐標(biāo)軸對稱,則原點是
A.A點 B. B點 C. C點 D. D
點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
定義:長寬比為:1(n為正基數(shù))的矩形稱為株為
矩形. 下面,我們通過折疊的方式折出一個
矩形.
如圖①所示.
操作1:將正方形ABCD沿過點B的直線折疊,使折疊后的點C落在對角線BD上的點G處,折痕為BH
操作2:將AD沿過點G的直線折疊,使點A,點D分別落在邊AB,CD上,折痕為EF
則四邊形BCEF為
矩形
證明:設(shè)正方形ABCD的邊長為1,則BD==
.
由折疊性質(zhì)可知BG=BC=1,,則四邊形BCEF為矩形
閱讀以上內(nèi)容,回答下列問題:
(1) 在圖中,所有與CH相等的線段是 ,tan
的值是
(2) 已知四邊形BCEF為矩形,模仿上述操作,得到四邊形BCMN,如圖
。
求證:四邊形BCMN是矩形
將圖中的
矩形BCM
N沿用(2)中的操作3次后,得到一個“
矩形”,則n的值是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,多邊形的各頂點都在方格紙的格點(橫豎格子線的交錯點)上,這樣的多邊形稱為格點多邊形,它的面積S可用公式(
是多邊形內(nèi)的格點數(shù),
是多邊形邊界上的格點數(shù))計算,這個公式稱為“皮克定理”。現(xiàn)有一張方格紙共有200個格點,畫有一個格點多邊形,它的面積S=40.
(1)這個格點多邊形邊界上的格點數(shù)= (用含
的代數(shù)式表示);
(2)設(shè)該格點多邊形外的格點數(shù)為,則
=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com