【題目】下列運(yùn)算正確的是( )
A. 3a+2b=5ab B. 3a2b﹣3ba2=0 C. 3x2+2x3=5x5 D. 5y2﹣4y2=1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于被墨水污染,一道幾何題僅能見到如圖所示的圖形和文字:“如圖,已知:四邊形ABCD中,AD∥BC,∠D=67°,…”
(1)根據(jù)以上信息,你可以求出∠A、∠B、∠C中的哪個(gè)角?寫出求解的過程;
(2)若要求出其它的角,請(qǐng)你添上一個(gè)適當(dāng)?shù)臈l件: ,并寫出解題過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果線段AB=13cm,MA+MB=17 cm,那么下面說法中正確的是 ( ).
A. M點(diǎn)在線段AB上 B. M點(diǎn)在直線AB上
C. M點(diǎn)在直線AB外 D. M點(diǎn)可能在直線AB上,也可能在直線AB外
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課外興趣小組活動(dòng)時(shí),老師提出了如下問題:
(1)如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:
延長(zhǎng)AD到E,使得DE=AD,再連接BE(或?qū)?/span>△ACD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
感悟:解題時(shí),條件中若出現(xiàn)“中點(diǎn)”“中線”字樣,可以考慮構(gòu)造以中點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形或全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形中.
(2)問題解決:
受到(1)的啟發(fā),請(qǐng)你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF.
①求證:BE+CF>EF;②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明;
(3)問題拓展:
如圖3,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點(diǎn)作∠EDF為60°角,角的兩邊分別交AB、AC于E、F兩點(diǎn),連接EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)四邊形的各邊之比為1:2:3:4,和它相似的另一個(gè)四邊形的最小邊長(zhǎng)為5cm,則它的最大邊長(zhǎng)為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知|x|=3,|y|=2,且xy<0,則x+y的值等于( 。
A. 5或﹣5 B. 1或﹣1 C. 5或1 D. ﹣5或﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有3張撲克牌,分別是紅桃3、紅桃4和黑桃5.把牌洗勻后甲先抽取一張,記下花色和數(shù)字后將牌放回,洗勻后乙再抽取一張.
(1)列表或畫樹狀圖表示所有取牌的可能性;
(2)甲、乙兩人做游戲,現(xiàn)有兩種方案:A方案:若兩次抽得相同花色則甲勝,否則乙勝;B方案:若兩次抽得數(shù)字和為奇數(shù)則甲勝,否則乙勝.請(qǐng)問甲選擇哪種方案獲勝概率更高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】10位學(xué)生分別購(gòu)買如下尺碼的鞋子:20,20,21,22,22,22,22,23,23,24(單位:cm).這組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)三個(gè)指標(biāo)中鞋店老板最喜歡的是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com