精英家教網 > 初中數學 > 題目詳情
(2010•陜西)如圖,A、B、C三點在同一條直線上,AB=2BC,分別以AB,BC為邊做正方形ABEF和正方形BCMN連接FN,EC.
求證:FN=EC.

【答案】分析:只要判定△FNE≌△EBC,就不難證明FN=EC.
解答:證明:在正方形ABEF中和正方形BCMN中,
AB=BE=EF,BC=BN,∠FEN=∠EBC=90°,
∵AB=2BC,即BC=BN=AB,
∴BN=BE,即N為BE的中點,
∴EN=NB=BC,
∴△FNE≌△EBC,
∴FN=EC.
點評:本題集中考查了正方形的性質和全等三角形的判定.
(1)正方形的四條邊相等,四個角相等,都是90°,對角線互相垂直、平分;
(2)三角形全等的判定定理有SAS、SSS、AAS,ASA,HL等.
練習冊系列答案
相關習題

科目:初中數學 來源:2010年全國中考數學試題匯編《二次函數》(07)(解析版) 題型:解答題

(2010•陜西)如圖,在平面直角坐標系中,拋物線A(-1,0),B(3,0),C(0,-1)三點.
(1)求該拋物線的表達式;
(2)點Q在y軸上,點P在拋物線上,要使Q、P、A、B為頂點的四邊形是平行四邊形,求所有滿足條件點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年陜西省中考數學試卷(解析版) 題型:解答題

(2010•陜西)如圖,在平面直角坐標系中,拋物線A(-1,0),B(3,0),C(0,-1)三點.
(1)求該拋物線的表達式;
(2)點Q在y軸上,點P在拋物線上,要使Q、P、A、B為頂點的四邊形是平行四邊形,求所有滿足條件點P的坐標.

查看答案和解析>>

科目:初中數學 來源:2010年陜西省中考數學試卷(解析版) 題型:填空題

(2010•陜西)如圖是一條水鋪設的直徑為2米的通水管道橫截面,其水面寬1.6米,則這條管道中此時最深為    米.

查看答案和解析>>

科目:初中數學 來源:2010年陜西省中考數學試卷(解析版) 題型:填空題

(2010•陜西)如圖,在△ABC中,D是AB邊上一點,連接CD,要使△ADC與△ABC相似,應添加的條件是   

查看答案和解析>>

同步練習冊答案