【題目】如圖,在∠MON中,以點(diǎn)O為圓心,任意長(zhǎng)為半徑作弧,交射線OM于點(diǎn)A,交射線ON于點(diǎn)B,再分別以A,B為圓心,OA的長(zhǎng)為半徑作弧,兩弧在∠MON的內(nèi)部交于點(diǎn)C,作射線OC.OA=5,AB=6,則點(diǎn)BAC的距離為(

A. 5 B. C. 4 D.

【答案】B

【解析】

根據(jù)題意,作出合適的輔助線,然后根據(jù)角平分線的性質(zhì)、等腰三角形的性質(zhì)和勾股定理可以求得點(diǎn)BAC的距離,本題得以解決.

由題意可得,
OC為∠MAN的角平分線,
∵OA=OB,OC平分∠AOB,
∴OC⊥AB,
設(shè)OCAB交于點(diǎn)D,作BE⊥AC于點(diǎn)E,
∵AB=6,OA=5,AC=OA,OC⊥AB,
∴AC=5,∠ADC=90°,AD=3,
∴CD=4,
,
,
解得,BE=,
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)OAPB的平分線上,OPA相切于點(diǎn)C

1)求證:直線PBO相切;

2PO的延長(zhǎng)線與O交于點(diǎn)E.若O的半徑為3,PC=4.求弦CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AD平分∠BAC,且BD=CD,DEAB于點(diǎn)E,DFAC于點(diǎn)F.

1)求證:AB=AC

2)若∠BAC=60°,BC=6,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖湛河兩岸ABEF平行,小亮同學(xué)假期在湛河邊A點(diǎn)處,測(cè)得對(duì)岸河邊C處視線與湛河岸的夾角∠CAB=37°,沿河岸前行140米到點(diǎn)B,測(cè)得對(duì)岸C處的視線與湛河岸夾角∠CBA=45°.問(wèn)湛河的寬度約多少米?(參考數(shù)據(jù)sin37°≈0.60,cos37°=0.80tan37°=0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是等邊△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:

①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;&

②點(diǎn)O與O′的距離為4;

③∠AOB=150°;

④四邊形AOBO′的面積為6+3

⑤S△AOC+S△AOB=6+.

其中正確的結(jié)論是_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,點(diǎn)的中點(diǎn),,垂足為,連接

1)如圖1的數(shù)量關(guān)系是__________.

2)如圖2,若是線段上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)、重合),連接,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,連接,請(qǐng)猜想三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】青年志愿者愛(ài)心小分隊(duì)赴山村送溫暖,準(zhǔn)備為困難村民購(gòu)買一些米面.已知購(gòu)買1袋大米、4袋面粉,共需240元;購(gòu)買2袋大米、1袋面粉,共需165.

(1)求每袋大米和面粉各多少元?

(2)如果愛(ài)心小分隊(duì)計(jì)劃購(gòu)買這些米面共40袋,總費(fèi)用不超過(guò)2140元,那么至少購(gòu)買多少袋面粉?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某初中對(duì) 600 名畢業(yè)生中考體育測(cè)試坐位體前屈成績(jī)進(jìn)行整理,繪制成 如下不完整的統(tǒng)計(jì)圖:

根據(jù)統(tǒng)計(jì)圖,回答下列問(wèn)題。

(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)扇形統(tǒng)計(jì)圖中,b= ,得 8 分所對(duì)應(yīng)扇形的圓心角度數(shù)為 ;

(3)在本次調(diào)查的學(xué)生中,隨機(jī)抽取 1 名男生,他的成績(jī)不低于 9 分的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;

(2)在這條拋物線的對(duì)稱軸右邊的圖象上有一點(diǎn)B,使AOB的面積等于6,求點(diǎn)B的坐標(biāo);

(3)對(duì)于(2)中的點(diǎn)B,在此拋物線上是否存在點(diǎn)P,使POB=90°?若存在,求出點(diǎn)P的坐標(biāo),并求出POB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案