【題目】如圖,己知AB是⊙O的直徑,AC是弦,點(diǎn)P是BA延長線上一點(diǎn),連接PC,BC.∠PCA=∠B.
(1)求證:PC是⊙O的切線;
(2)若PC=6,PA=4,求直徑AB的長.
【答案】(1)證明見解析 (2)5
【解析】
(1)連接OC,由圓周角定理得出∠ACB=90°,得出∠1+∠2=90°,由等腰三角形的性質(zhì)及等式性質(zhì)得出∠PCA=∠2,因此∠1+∠PCA=90°,即PC⊥OC,即可得出結(jié)論;
(2)由∠P=∠P,∠PCA=∠B,得到△PCA∽△PBC,再由相似三角形的性質(zhì)得出PC2=PAPB,求出PB,即可得出直徑AB的長.
(1)連接OC,如圖所示:
∵AB是⊙的直徑,∴∠ACB=90°,即∠1+∠2=90°.
∵OB=OC,∴∠2=∠B.
又∵∠PCA=∠B,∴∠PCA=∠2,∴∠1+∠PCA=90°,即PC⊥OC,∴PC是⊙O的切線;
(2)∵∠P=∠P,∠PCA=∠B,∴△PCA∽△PBC,∴PC:PB=PA:PC,∴PC2=PAPB,∴62=4×PB,解得:PB=9,∴AB=PB﹣PA=9﹣4=5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在矩形ABCD中,對角線AC與BD相交于點(diǎn)O,過點(diǎn)C作BD的平行線,過點(diǎn)D作AC的平行線,兩線交于點(diǎn)P.
①求證:四邊形CODP是菱形.
②若AD=6,AC=10,求四邊形CODP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著移動終端設(shè)備的升級換代,手機(jī)已經(jīng)成為我們生活中不可缺少的一部分,為了解中學(xué)生在假期使用手機(jī)的情況(選項(xiàng):A.和同學(xué)親友聊天;B.學(xué)習(xí);C.購物;D.游戲;E.其它),端午節(jié)后某中學(xué)在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,得到如下圖表(部分信息未給出):根據(jù)以上信息解答下列問題:
(1)這次被調(diào)查的學(xué)生有多少人?
(2)求表中m,n,p的值,并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若該中學(xué)約有800名學(xué)生,估計(jì)全校學(xué)生中利用手機(jī)購物或玩游戲的共有多少人?并根據(jù)以上調(diào)查結(jié)果,就中學(xué)生如何合理使用手機(jī)給出你的一條建議.
選項(xiàng) | 頻數(shù) | 頻率 |
A | 10 | m |
B | n | 0.2 |
C | 5 | 0.1 |
D | p | 0.4 |
E | 5 | 0.1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成任務(wù):
自相似圖形
定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務(wù):
(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CD⊥AB于點(diǎn)D,則CD將△ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線y=ax2+bx+c的對稱軸為直線x=1,且過點(diǎn)(3,0),下列結(jié)論:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正確的有( 。﹤(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說法中,錯(cuò)誤的是( )
A. 拋物線于x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣2,0)
B. 拋物線與y軸的交點(diǎn)坐標(biāo)為(0,6)
C. 拋物線的對稱軸是直線x=0
D. 拋物線在對稱軸左側(cè)部分是上升的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=2x2+mx+n經(jīng)過點(diǎn)A(0,﹣2),B(3,4).
(1)求拋物線的表達(dá)式及對稱軸;
(2)設(shè)點(diǎn)B關(guān)于原點(diǎn)的對稱點(diǎn)為C,點(diǎn)D是拋物線對稱軸上一動點(diǎn),且點(diǎn)D縱坐標(biāo)為t,記拋物線在A,B之間的部分為圖象G(包含A,B兩點(diǎn)).若直線CD與圖象G有公共點(diǎn),結(jié)合函數(shù)圖象,求點(diǎn)D縱坐標(biāo)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com