(本題滿分10分)如圖,直線交軸于A點,交軸于B點,過A、B兩點的拋物線交軸于另一點C(3,0).
⑴ 求拋物線的解析式;
⑵ 在拋物線的對稱軸上是否存在點Q,使△ABQ是等腰三角形?若存在,求出符合條件的Q點坐標;若不存在,請說明理由.
解:(1)∵當=0時,=3
當=0時,=﹣1
∴(﹣1,0),(0,3)
∵(3,0)··························1分
設拋物線的解析式為=a(+1)(﹣3)
∴3=a×1×(﹣3)
∴a=﹣1
∴此拋物線的解析式為=﹣( + 1)(﹣3)=- +2+3·····2分
(2)存在∵拋物線的對稱軸為:==1···············4分
∴如圖對稱軸與軸的交點即為Q
∵=,⊥
∴=
∴(1,0)··························6分
當=時,設的坐標為(1,m)
∴2+m=1+(3﹣m)
∴m=1
∴(1,1)··························8分
當=時,設(1,n)
∴2+n=1+3
∵n>0 ∴n= ∴(1,)
∴符合條件的點坐標為(1,0),(1,1),(1,)·10分
【解析】略
科目:初中數學 來源: 題型:
(本題滿分10分)
如圖,將OA = 6,AB = 4的矩形OABC放置在平面直角坐標系中,動點M、N以每秒1個單位的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.
(1)點B的坐標為 ;用含t的式子表示點P的坐標為 ;(3分)
(2)記△OMP的面積為S,求S與t的函數關系式(0 < t < 6);并求t為何值時,S有最大值?(4分)
(3)試探究:當S有最大值時,在y軸上是否存在點T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點T的坐標;若不存在,請說明理由.(3分)
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2011年江蘇省泰州市中考數學試卷 題型:解答題
(本題滿分10分)如圖,以點O為圓心的兩個同心圓中,矩形ABCD的邊BC為大圓的弦,邊AD與小圓相切于點M,OM的延長線與BC相交于點N。
(1)點N是線段BC的中點嗎?為什么?
(2)若圓環(huán)的寬度(兩圓半徑之差)為6cm,AB=5cm,BC=10cm,求小圓的半徑。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com