(2010•常德)如圖,已知拋物線y=x2+bx+c與x軸交于點(diǎn)A(-4,0)和B(1,0)兩點(diǎn),與y軸交于C點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)E是線段AB上的動(dòng)點(diǎn),作EF∥AC交BC于F,連接CE,當(dāng)△CEF的面積是△BEF面積的2倍時(shí),求E點(diǎn)的坐標(biāo);
(3)若P為拋物線上A、C兩點(diǎn)間的一個(gè)動(dòng)點(diǎn),過(guò)P作y軸的平行線,交AC于Q,當(dāng)P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段PQ的值最大,并求此時(shí)P點(diǎn)的坐標(biāo).

【答案】分析:(1)將A、B的坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)的值;
(2)根據(jù)拋物線的解析式可得出C點(diǎn)的坐標(biāo),易證得△ABC是直角三角形,則EF⊥BC;△CEF和△BEF同高,則面積比等于底邊比,由此可得出CF=2BF;易證得△BEF∽△BAC,根據(jù)相似三角形的性質(zhì),即可求得BE、AB的比例關(guān)系,由此可求出E點(diǎn)坐標(biāo);
(3)PQ的長(zhǎng)實(shí)際是直線AC與拋物線的函數(shù)值的差,可設(shè)P點(diǎn)橫坐標(biāo)為m,用m表示出P、Q的縱坐標(biāo),然后可得出PQ的長(zhǎng)與m的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出PQ最大時(shí),m的值,也就能求出此時(shí)P點(diǎn)的坐標(biāo).
解答:解:(1)由題意,得:
解得;
∴y=x2+x-2;

(2)由(1)知:C(0,-2);
則AC2=AO2+OC2=20,BC2=BO2+OC2=5;
而AB2=25=AC2+BC2;
∴△ACB是直角三角形,且∠ACB=90°;
∵EF∥AC,
∴EF⊥BC;
∵S△CEF=2S△BEF,
∴CF=2BF,BC=3BF;
∵EF∥AC,
;
∵AB=5,
∴BE=
OE=BE-OB=,故E(,0);

(3)設(shè)P點(diǎn)坐標(biāo)為(m,m2+m-2);
已知A(-4,0),C(0,-2),
設(shè)直線AC的解析式為:
y=kx-2,
則有:-4k-2=0,k=-;
∴直線AC的解析式為y=-x-2;
∴Q點(diǎn)坐標(biāo)為(m,-m-2);
則PQ=-m-2-(m2+m-2)=-m2-2m;
∴當(dāng)m=-2,即P(-2,-3)時(shí),PQ最大,且最大值為2.
故當(dāng)P運(yùn)動(dòng)到OA垂直平分線上時(shí),PQ的值最大,此時(shí)P(-2,-3).
點(diǎn)評(píng):此題考查了二次函數(shù)解析式的確定、直角三角形的判定和性質(zhì)、三角形面積的求法、相似三角形的判定和性質(zhì)、二次函數(shù)的應(yīng)用等知識(shí),綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年湖南省常德市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•常德)如圖,已知拋物線y=x2+bx+c與x軸交于點(diǎn)A(-4,0)和B(1,0)兩點(diǎn),與y軸交于C點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)E是線段AB上的動(dòng)點(diǎn),作EF∥AC交BC于F,連接CE,當(dāng)△CEF的面積是△BEF面積的2倍時(shí),求E點(diǎn)的坐標(biāo);
(3)若P為拋物線上A、C兩點(diǎn)間的一個(gè)動(dòng)點(diǎn),過(guò)P作y軸的平行線,交AC于Q,當(dāng)P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段PQ的值最大,并求此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(07)(解析版) 題型:解答題

(2010•常德)如圖1,若四邊形ABCD、四邊形GFED都是正方形,顯然圖中有AG=CE,AG⊥CE;
(1)當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖2的位置時(shí),AG=CE是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;
(2)當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖3的位置時(shí),延長(zhǎng)CE交AG于H,交AD于M.
①求證:AG⊥CH;
②當(dāng)AD=4,DG=時(shí),求CH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圓》(14)(解析版) 題型:解答題

(2010•常德)如圖AB是⊙O的直徑,∠A=30°,延長(zhǎng)OB到D使BD=OB.
(1)△OBC是否是等邊三角形?說(shuō)明理由;
(2)求證:DC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(13)(解析版) 題型:解答題

(2010•常德)如圖1,若四邊形ABCD、四邊形GFED都是正方形,顯然圖中有AG=CE,AG⊥CE;
(1)當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖2的位置時(shí),AG=CE是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;
(2)當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖3的位置時(shí),延長(zhǎng)CE交AG于H,交AD于M.
①求證:AG⊥CH;
②當(dāng)AD=4,DG=時(shí),求CH的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案