【題目】如圖,拋物線經(jīng)過(guò)A10),B5,0),C0, )三點(diǎn).

1)求拋物線的解析式;

2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);

3)點(diǎn)Mx軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,CMN四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1y=x22x;(2P2,);(3)點(diǎn)N的坐標(biāo)為(4),(2+ )或(2 ).

【解析】試題分析:本題考查的是二次函數(shù)綜合題,涉及到用待定系數(shù)法求一次函數(shù)與二次函數(shù)的解析式、平行四邊的判定與性質(zhì)、全等三角形等知識(shí),在解答(3)時(shí)要注意進(jìn)行分類討論.(1)設(shè)拋物線的解析式為y=ax2+bx+ca≠0),再把A﹣1,0),B50),C0)三點(diǎn)代入求出abc的值即可;(2)因?yàn)辄c(diǎn)A關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)B的坐標(biāo)為(5,0),連接BC交對(duì)稱軸直線于點(diǎn)P,求出P點(diǎn)坐標(biāo)即可;(3)分點(diǎn)Nx軸下方或上方兩種情況進(jìn)行討論.

試題解析:(1)設(shè)拋物線的解析式為y=ax2+bx+ca≠0),∵A﹣10),B5,0),C0)三點(diǎn)在拋物線上,,解得拋物線的解析式為:y=x2﹣2x﹣;

2拋物線的解析式為:y=x2﹣2x﹣,其對(duì)稱軸為直線x=﹣=﹣=2,連接BC,如圖1所示,

∵B50),C0,),設(shè)直線BC的解析式為y=kx+bk≠0),,解得直線BC的解析式為y=x﹣,當(dāng)x=2時(shí),y=1﹣=﹣∴P2,);

3)存在.如圖2所示,

當(dāng)點(diǎn)Nx軸下方時(shí),拋物線的對(duì)稱軸為直線x=2C0,),∴N14,);

當(dāng)點(diǎn)Nx軸上方時(shí),如圖2,過(guò)點(diǎn)N2N2D⊥x軸于點(diǎn)D,在△AN2D△M2CO中,

∴△AN2D≌△M2COASA),∴N2D=OC=,即N2點(diǎn)的縱坐標(biāo)為x2﹣2x﹣=,

解得x=2+x=2﹣∴N22+,),N32﹣,).綜上所述,符合條件的點(diǎn)N的坐標(biāo)為N14,),N22+,)或N32﹣,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,菱形ABCD中,A=60°,點(diǎn)P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運(yùn)動(dòng)到D終止,點(diǎn)Q從A與P同時(shí)出發(fā),沿邊AD勻速運(yùn)動(dòng)到D終止,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.

(1)求點(diǎn)Q運(yùn)動(dòng)的速度;

(2)求圖2中線段FG的函數(shù)關(guān)系式;

(3)問(wèn):是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線與反比例函數(shù)交于點(diǎn),且點(diǎn)的橫坐標(biāo)為4,過(guò)軸上一點(diǎn)垂直于點(diǎn),如圖.

1)若點(diǎn)是線段上一動(dòng)點(diǎn),過(guò)點(diǎn),,垂足分別于、,求線段長(zhǎng)度的最小值.

2)在(1)的取得最小值的前提下,將沿射線平移,記平移后的三角形為,當(dāng)時(shí),在平面內(nèi)存在點(diǎn),使得、四點(diǎn)構(gòu)成平行四邊形,這樣的點(diǎn)有幾個(gè)?直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=6,BC=12,點(diǎn)D在邊BC上,點(diǎn)E在線段AD上,EFAC于點(diǎn)FEGEFAB于點(diǎn)G,若EF=EG,則CD的長(zhǎng)為( )

A.3.6B.4C.4.8D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】類比探究:

1)如圖1,等邊△ABC內(nèi)有一點(diǎn)P,若AP8,BP15,CP17,求∠APB的大。唬ㄌ崾荆簩ⅰABP繞頂點(diǎn)A旋轉(zhuǎn)到△ACP處)

2)如圖2,在△ABC中,∠CAB90°,ABACE、FBC上的點(diǎn),且∠EAF45°.求證:EF2BE2+FC2;

3)如圖3,在△ABC中,∠C90°,∠ABC30°,點(diǎn)O為△ABC內(nèi)一點(diǎn),連接AOBO、CO,且∠AOC=∠COB=∠BOA120°,若AC1,求OA+OB+OC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P出發(fā),沿所示方向運(yùn)動(dòng),每當(dāng)碰到長(zhǎng)方形OABC的邊時(shí)會(huì)進(jìn)行反彈,反彈時(shí)反射角等于入射角,當(dāng)點(diǎn)P2018次碰到長(zhǎng)方形的邊時(shí),點(diǎn)P的坐標(biāo)為______

【答案】

【解析】

根據(jù)反射角與入射角的定義作出圖形;由圖可知,每6次反彈為一個(gè)循環(huán)組依次循環(huán),用2018除以6,根據(jù)商和余數(shù)的情況確定所對(duì)應(yīng)的點(diǎn)的坐標(biāo)即可.

解:如圖所示:經(jīng)過(guò)6次反彈后動(dòng)點(diǎn)回到出發(fā)點(diǎn),

,

當(dāng)點(diǎn)P2018次碰到矩形的邊時(shí)為第337個(gè)循環(huán)組的第2次反彈,

點(diǎn)P的坐標(biāo)為

故答案為:

【點(diǎn)睛】

此題主要考查了點(diǎn)的坐標(biāo)的規(guī)律,作出圖形,觀察出每6次反彈為一個(gè)循環(huán)組依次循環(huán)是解題的關(guān)鍵.

型】填空
結(jié)束】
15

【題目】為了保護(hù)環(huán)境,某公交公司決定購(gòu)買A、B兩種型號(hào)的全新混合動(dòng)力公交車共10輛,其中A種型號(hào)每輛價(jià)格為a萬(wàn)元,每年節(jié)省油量為萬(wàn)升;B種型號(hào)每輛價(jià)格為b萬(wàn)元,每年節(jié)省油量為萬(wàn)升:經(jīng)調(diào)查,購(gòu)買一輛A型車比購(gòu)買一輛B型車多20萬(wàn)元,購(gòu)買2A型車比購(gòu)買3B型車少60萬(wàn)元.

請(qǐng)求出ab;

若購(gòu)買這批混合動(dòng)力公交車每年能節(jié)省萬(wàn)升汽油,求購(gòu)買這批混合動(dòng)力公交車需要多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“*”定義一種新運(yùn)算:對(duì)于任意有理數(shù)ab,規(guī)定a*b=ab2+2ab+a.

如:1*3=1×32+2×1×3+1=16

(1)求2*(﹣2)的值;

(2)若2*x=m,(其中x為有理數(shù)),試比較m,n的大。

(3)若[]=a+4,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為1,0,點(diǎn)B的坐標(biāo)為0,4,已知點(diǎn)Em,0是線段DO上的動(dòng)點(diǎn),過(guò)點(diǎn)E作PEx軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H

1求該拋物線的解析式;

2當(dāng)點(diǎn)P在直線BC上方時(shí),請(qǐng)用含m的代數(shù)式表示PG的長(zhǎng)度;

32的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與DEH相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張老師打算在小明和小白兩位同學(xué)之間選一位同學(xué)參加數(shù)學(xué)競(jìng)賽,他收集了小明、小白近期10次數(shù)學(xué)考試成績(jī),并繪制了折線統(tǒng)計(jì)圖(如圖所示)

項(xiàng)目

眾數(shù)

中位數(shù)

平均數(shù)

方差

最高分

小明

85

85

小白

70100

85

100

(1)根據(jù)折線統(tǒng)計(jì)圖,張老師繪制了不完整的統(tǒng)計(jì)表,請(qǐng)你補(bǔ)充完整統(tǒng)計(jì)表;

(2)你認(rèn)為張老師會(huì)選擇哪位同學(xué)參加比賽?并說(shuō)明你的理由

查看答案和解析>>

同步練習(xí)冊(cè)答案