精英家教網如圖,方格紙中△A′B′C′的面積是△ABC的面積的
 
倍,線段A′B′是AB的
 
倍.
分析:設一個小方格的邊長為1,利用勾股定理可以求出△ABC和△A′B′C′的各邊的長,再看對應邊的比是不是相等,相等則兩個三角形相似.那么它們的對應邊的比的平方等于面積比,可得出A′B′與AB的關系.
解答:解:根據(jù)勾股定理,可求出AB=
12+22
=
5

同理可求出A′B′=2
5
,
B′C′=4
2
,BC=2
2
,
AB
A′B′
=
AC
A′C′
=
BC
B′C′
=
1
2
,
∴△ABC∽△A′B′C′,
∴A′B′是AB的2倍.
點評:本題利用了勾股定理,以及相似三角形的判定(三邊對應成比例的兩個三角形相似)及性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點三角形,圖中的△ABC就是格點三角形.
(1)作出△ABC關于直線MN的對稱圖形△A1B1C1
(2)求四邊形BCC1B1的面積.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中△ABC的三個頂點均在格點上,將△ABC向右平移5格得到△A1B1C1,再將△A1B1精英家教網C1繞點A1逆時針旋轉180°,得到△A1B2C2
(1)在方格紙中畫出△A1B1C1和△A1B2C2
(2)設B點坐標為(-3,-2),B2點坐標為(4,2),△ABC與△A1B2C2是否成中心對稱?若成中心對稱,請畫出對稱中心,并寫出對稱中心的坐標;若不成中心對稱,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,方格紙中有三個點A、B、C,按要求作出四邊形,四邊形的各頂點在格點上.
(1)圖(1)中的四邊形是中心對稱圖形但不是軸對稱圖形;
(2)圖(2)中的四邊形是軸對稱圖形但不是中心對稱圖形;
(3)圖(3)中的圖形既是中心對稱圖形,又是軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•佳木斯)如圖,方格紙中每個小正方形的邊長都是單位1,△ABC的三個頂點都在格點上,結合所給的平面直角坐標系解答下列問題:
(1)將△ABC向右平移3個單位長度再向下平移2個單位長度,畫出兩次平移后的△A1B1C1
(2)寫出A1、C1的坐標;
(3)將△A1B1C1繞C1逆時針旋轉90°,畫出旋轉后的△A2B2C1,求線段B1C1旋轉過程中掃過的面積(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,-2).
(1)把△ABC向上平移5個單位后得到對應的△A1B1C1,畫出△A1B1C1,并寫出C1的坐標;
(2)以原點O為對稱中心,畫出△ABC關于原點O對稱的△A2B2C2,并寫出點C2的坐標.
(3)以原點O為旋轉中心,畫出把△ABC順時針旋轉90°后所得的圖形△A3B3C3,并寫出C3,的坐標.

查看答案和解析>>

同步練習冊答案