【題目】一個不透明的袋中裝有紅、黃、白三種顏色的球共100個,它們除顏色外都相同,其中黃球的個數(shù)是白球個數(shù)的2倍少5個,已知從袋中摸出一個紅球的概率是
(1)求袋中紅球的個數(shù);
(2)求從袋中摸出一個球是白球的概率;
(3)取走5個黃球5個白球,求從剩余的球中摸出一個球是紅球的概率.

【答案】
(1)解:根據(jù)題意得:

100× =30,

答:紅球有30個


(2)解:設(shè)白球有x個,則黃球有(2x﹣5)個,

根據(jù)題意得x+2x﹣5=100﹣30,

解得x=25.

所以摸出一個球是白球的概率P= =


(3)解:因為取走5個黃球5個白球后,還剩90個球,其中紅球的個數(shù)沒有變化,

所以從剩余的球中摸出一個球是紅球的概率 =


【解析】(1)根據(jù)紅、黃、白三種顏色球共有的個數(shù)乘以紅球的概率即可;(2)設(shè)白球有x個,得出黃球有(2x﹣5)個,根據(jù)題意列出方程,求出白球的個數(shù),再除以總的球數(shù)即可;(3)先求出取走10個球后,還剩的球數(shù),再根據(jù)紅球的個數(shù),除以還剩的球數(shù)即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點為P(4,﹣4)的二次函數(shù)圖象經(jīng)過原點(0,0),點A在該圖象上,OA交其對稱軸l于點M,點M、N關(guān)于點P對稱,連接AN、ON,

(1)求該二次函數(shù)的關(guān)系式;
(2)若點A的坐標(biāo)是(6,﹣3),求△ANO的面積;
(3)若點A在對稱軸l右側(cè)的二次函數(shù)圖象上運動時,請解答下面問題:
①證明:∠ANM=∠ONM;
②△ANO能否為直角三角形?如果能,請求出所有符合條件的點A的坐標(biāo);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.

(1)請判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學(xué)校準(zhǔn)備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.
(1)求足球和籃球的單價各是多少元?
(2)根據(jù)學(xué)校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1550元,學(xué)校最多可以購買多少個足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1 , 它與x軸交于點O,A1;將C1繞點A1旋轉(zhuǎn)180°得C2 , 交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3 , 交x軸于點A3;…,如此進(jìn)行下去,直至得Cn . 若P(2014,m)在第n段拋物線Cn上,則m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一坐標(biāo)系中,函數(shù)y=ax2+bx與y= 的圖象大致是圖中的(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某道判斷題的五個選項中有兩個正確答案,該題滿分為4分,得分規(guī)則是:選出兩個正確答案且沒有選錯誤答案得4分;只選出一個正確答案且沒有選錯誤答案得2分;不選或所選答案中有錯誤答案得0分.
(1)任選一個答案,得到2分的概率是;
(2)請利用樹狀圖或表格求任選兩個答案,得到4分的概率;
(3)如果小明只能確認(rèn)其中一個答案是正確的,此時的最佳答題策略是
A.只選確認(rèn)的那一個正確答案
B.除了選擇確認(rèn)的那一個正確答案,再任選一個
C.干脆空著都不選了.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AC=a,BD=b,且AC⊥BD,順次連接四邊形ABCD各邊中點,得到四邊形A1B1C1D1 , 再順次連接四邊形A1B1C1D1各邊中點,得到四邊形A2B2C2D2 , …,如此進(jìn)行下去,得到四邊形AnBnCnDn . 下列結(jié)論正確的有(
①四邊形A2B2C2D2是矩形;
②四邊形A4B4C4D4是菱形;
③四邊形A5B5C5D5的周長是 ,
④四邊形AnBnCnDn的面積是

A.①②③
B.②③④
C.①②
D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是線段AB上的點,C,D分別是線段OA,OB的中點,小明很輕松地求得CD=AB.他在反思過程中突發(fā)奇想:若點O在線段AB的延長線上或在直線AB,則原有的結(jié)論“CD=AB”仍然成立嗎?請幫小明解決此問題(當(dāng)點O在線段AB的延長線上時,請畫圖分析該結(jié)論是否成立,并說明理由;當(dāng)點O在直線AB外時,作出圖形,通過度量說明該結(jié)論是否成立).

查看答案和解析>>

同步練習(xí)冊答案