如圖1,將底面為正方形的兩個完全相同的長方體鐵塊放入一圓柱形水槽內(nèi),并向水槽內(nèi)勻速注水,速度為vcm3/s,直至水面與長方體頂面平齊為止.水槽內(nèi)的水深h(cm)與注水時間t(s)的函數(shù)關系如圖2所示.根據(jù)圖象完成下列問題:

(1)一個長方體的體積是           cm3;
(2)求圖2中線段AB對應的函數(shù)關系式;
(3)求注水速度v和圓柱形水槽的底面積S.

(1)長方體的體積為11200cm3;
(2)直線AB的函數(shù)關系式為y=x+6;
(3)注水速度為cm3/s,底面積為 cm2

解析試題分析:(1)結(jié)合函數(shù)圖象和圖形就可以求出底面為正方形的長方體的地面邊長和高,從而求出體積;
(2)直接運用待定系數(shù)法就可以求出其結(jié)論;
(3)根據(jù)容器的容積與長方體的體積及注水速度的關系建立方程組就可以求出結(jié)論.
試題解析:(1)由函數(shù)圖象,得:長方體底面正方形的邊長為20cm,長方體的高度為28cm,
∴長方體的體積為:20×20×28=11200cm3;
(2)設直線AB的函數(shù)關系式為y=kx+b,由A(10,20),B(30,48)得,
,
解得:
∴y=x+6;
(3)由題意得,
,
解得:
答:注水速度為cm3/s,底面積為cm2
考點:一次函數(shù)的應用.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

在一條直線上依次有A、B、C三地,自行車愛好者甲、乙兩人同時分別從A、B兩地出發(fā),沿直線勻速騎向C地.已知甲的速度為20 km/h,設甲、乙兩人行駛x(h)后,與A地的距離分別為y1、y2 (km), y1、y2 與x的函數(shù)關系如圖所示.
(1)求y2與x的函數(shù)關系式;
(2)若兩人在出發(fā)時都配備了通話距離為3km的對講機,求甲、乙兩人在騎行過程中可以用對講機通話的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)y=(m≠0)的圖象有公共點A(1,2).直線l⊥x軸于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B,C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖①,一條筆直的公路上有A、B、C三地,B、C兩地相距150千米,甲、乙兩輛汽車分別從B、C兩地同時出發(fā),沿公路勻速相向而行,分別駛往C、B兩地.甲、乙兩車到A地的距離y1、y2(千米)與行駛時間x(時)的關系如圖②所示.根據(jù)圖象進行以下探究:


(1)請在圖①中標出A地的位置,并作簡要的文字說明;
(2)求圖②中M點的坐標,并解釋該點的實際意義;
(3)在圖②中補全甲車的函數(shù)圖象,求甲車到A地的距離y1與行駛時間x的函數(shù)關系式;
(4)A地設有指揮中心,指揮中心及兩車都配有對講機,兩部對講機在15千米之內(nèi)(含15千米)時能夠互相通話,求兩車可以同時與指揮中心用對講機通話的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某公司有甲種原料260kg,乙種原料270kg,計劃用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共40件.生產(chǎn)每件A種產(chǎn)品需甲種原料8kg,乙種原料5kg,可獲利潤900元;生產(chǎn)每件B種產(chǎn)品需甲種原料4kg,乙種原料9kg,可獲利潤1100元.設安排生產(chǎn)A種產(chǎn)品x件.
(1)完成下表

 
甲(kg)
乙(kg)
件數(shù)(件)
A
 
5x
x
B
4(40-x)
 
40-x
(2)安排生產(chǎn)A、B兩種產(chǎn)品的件數(shù)有幾種方案?試說明理由;
(3)設生產(chǎn)這批40件產(chǎn)品共可獲利潤y元,將y表示為x的函數(shù),并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,一次函數(shù)y=3x的圖象與反比例函數(shù)的圖象的一個交點為A(1,m).

(1)求反比例函數(shù)的解析式;
(2)若點P在直線OA上,且滿足PA=2OA,直接寫出點的坐標(不寫求解過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

甲、乙兩人同時從相距90千米的A地前往B地,甲乘汽車,乙騎摩托車,甲到達B地停留半小時后返回A地.如果是他們離A地的距離y(千米)與時間x(時)之間的函數(shù)關系圖象.

(1)求甲從B地返回A地的過程中,y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)若乙出發(fā)后2小時和甲相遇,求乙從A地到B地用了多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2(k為常數(shù),且k≠0)的圖象都經(jīng)過點A(m,2).

(1)求點A的坐標及反比例函數(shù)的表達式;
(2)結(jié)合圖象直接比較:當x>0時,y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

華盛印染廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品出廠價為30元,成本價為20元(不含污水處理部分費用).在生產(chǎn)過程中,平均每生產(chǎn)1件產(chǎn)品就有0.5立方米污水排出,所以為了凈化環(huán)境,工廠設計了兩種對污水進行處理的方案并準備實施.
方案一:工廠污水先凈化處理后再排出,每處理1立方米污水所用的原料費用為2元,并且每月排污設備損耗等其它各項開支為27000元.
方案二:將污水排放到污水處理廠統(tǒng)一處理,每處理1立方米污水需付8元排污費.
(1)若實施方案一,為了確保印染廠有利潤,則每月的產(chǎn)量應該滿足怎樣的條件?
(2)你認為該工廠應如何選擇污水處理方案?

查看答案和解析>>

同步練習冊答案