【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點,與軸分別交于點,點.是直線上方的拋物線上一動點.

(1)求二次函數(shù)的表達(dá)式;

(2)連接,,并把沿軸翻折,得到四邊形.若四邊形為菱形,請求出此時點的坐標(biāo);

(3)當(dāng)點運動到什么位置時,四邊形的面積最大?求出此時點的坐標(biāo)和四邊形的最大面積.

【答案】(1)該二次函數(shù)的表達(dá)式為;(2)點P的坐標(biāo)為(,);(3)P點的坐標(biāo)為,四邊形ABPC的面積的最大值為

【解析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)菱形的對角線互相平分,可得P點的縱坐標(biāo),根據(jù)函數(shù)值與自變量的對應(yīng)關(guān)系,可得答案;
(3)根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得m的值,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得P點坐標(biāo).

【解答】(1)將點B和點C的坐標(biāo)代入,

,解得,

該二次函數(shù)的表達(dá)式為

2)若四邊形POP′C是菱形,則點P在線段CO的垂直平分線上;

如圖,連接PP,則PECO,垂足為E

C0,3), 

E0,

P的縱坐標(biāo)等于

,

解得,(不合題意,舍去),

P的坐標(biāo)為().

3)過點Py軸的平行線與BC交于點Q,與OB交于點F

設(shè)Pm,),設(shè)直線BC的表達(dá)式為,

, 解得 .

∴直線BC的表達(dá)式為

Q點的坐標(biāo)為(m,),

.

當(dāng),

解得,

AO=1,AB=4,

S四邊形ABPC =SABC+SCPQ+SBPQ

=

=

=

當(dāng)時,四邊形ABPC的面積最大.

此時P點的坐標(biāo)為,四邊形ABPC的面積的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)閱讀材料,回答問題.

材料:如圖所示,有公共端點(O)的兩條射線組成的圖形叫做角(.如果一條射線()把一個角()分成兩個相等的角(),這條射線()叫做這個角的平分線.這時,(或.

問題:平面內(nèi)一定點A在直線的上方,點O為直線上一動點,作射線,,,當(dāng)點O在直線上運動時,始終保持,將射線繞點O順時針旋轉(zhuǎn)60°得到射線.

1)如圖1,當(dāng)點O運動到使點A在射線的左側(cè)時,若平分,求的度數(shù);

2)當(dāng)點O運動到使點A在射線的左側(cè),時,求的值;

3)當(dāng)點O運動到某一時刻時,,直接寫出此時的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACF≌△DBE,其中點A、B、C、D在一條直線上.

1)若BEAD,∠F=62°,求∠A的大小.

2)若AD=9cm,BC=5cm,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,∠BAC=36°CD是∠ACB的平分線交AB于點D,過點AAEBC,交CD的延長線于點E

1)求∠ADC的度數(shù);

2)求證:AE=AC

3)試問ADE是等腰三角形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=10cm,BC=8cm,點DAB的中點.如果點P在線段BC上以3cm/s的速度由點BC點運動,同時,點Q在線段CA上由點CA點運動.

1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,BPDCQP是否全等,請說明理由.

2)若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使BPDCQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB60°,自O點引射線OC,若∠AOC:∠COB23,求OC與∠AOB的平分線所成的角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七(1)班的數(shù)學(xué)興趣小組在活動中,對線段中點問題進(jìn)行以下探究.已知線段,點上一個動點,點,分別是,的中點.

1)如圖1,若點在線段上,且,求的長度;

2)如圖2,若點是線段上任意一點,則的長度為______;

3)若點在線段的延長線上,其余條件不變,借助圖3探究的長度,請直接寫出的長度(不寫探究過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:用2A型車和1B型車裝滿貨物一次可運貨10t;用1A型車和2B型車裝滿貨物一次可運貨11t.某物流公司現(xiàn)有35t貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都裝滿貨物.根據(jù)以上信息,解答下列問題:

(1)1A型車和1B型車都裝滿貨物一次可分別運貨多少噸?

(2)請你幫該物流公司設(shè)計租車方案;

(3)A型車每輛需租金100元/次,B型車每輛需租金120元/次.請選出最省錢的租車方案,并求出最少租車費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一塊長為a米的長方形苗圃劃分成8個部分(如圖),其中AB,C三塊苗圃是正方形,邊長為b 米,苗圃H也是正方形.

1)求整個苗圃的面積;

2)若A,B,C三個苗圃種甲種花卉,每平方米利潤250元,D,H兩個苗圃種乙種花卉,每平方米利潤120元,E,F,G三個苗圃種丙種花卉,每平方米利潤100元,請問整個苗圃的利潤為多少元?(結(jié)果用代數(shù)式表示,要化簡)

查看答案和解析>>

同步練習(xí)冊答案