在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象經(jīng)過(guò)(,0)和(,0)兩點(diǎn).
(1)求此二次函數(shù)的表達(dá)式.
(2)直接寫(xiě)出當(dāng)<x<1時(shí),y的取值范圍.
(3)將一次函數(shù) y=(1-m)x+2的圖象向下平移m個(gè)單位后,與二次函數(shù)圖象交點(diǎn)的橫坐標(biāo)分別是a和b,其中a<2<b,試求m的取值范圍.

(1);(2)<y<3;(3)m<的全體實(shí)數(shù).

解析試題分析:(1)根據(jù)點(diǎn)在曲線上點(diǎn)的坐標(biāo)滿(mǎn)足方程的關(guān)系,由二次函數(shù)的圖象經(jīng)過(guò)(,0)和(,0)兩點(diǎn),列方程組求解即可.
(2)作圖觀察即可;
(3)根據(jù)題意,得到平移后的一次函數(shù)表達(dá)式,由a<2<b得,取x=2,解出即可.
試題解析:(1)由二次函數(shù)的圖象經(jīng)過(guò)(,0)和(,0)兩點(diǎn),得
解這個(gè)方程組,得
∴此二次函數(shù)的表達(dá)式為.
(2)如圖,當(dāng)x=時(shí),y=3,當(dāng)x=1時(shí)y=
又二次函數(shù)的頂點(diǎn)坐標(biāo)是().
∴當(dāng)<x<1時(shí)y的取值范圍是<y<3.

(3)將一次函數(shù) 的圖象向下平移m個(gè)單位后的一次函數(shù)表達(dá)式為.
與二次函數(shù)圖象交點(diǎn)的橫坐標(biāo)為a和b,
,整理得.
∵a<2<b,∴a≠b.∴,
∴m≠1.
∵a和b滿(mǎn)足a<2<b,∴如圖,當(dāng)x=2時(shí),.
把x=2代入,解得m<,
∴m的取值范圍為m<的全體實(shí)數(shù).

考點(diǎn):1.二次函數(shù)綜合題;2.平移問(wèn)題;3.待定系數(shù)法的應(yīng)用;4.曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系;5.二次函數(shù)與不等式和方程的關(guān)系;6.數(shù)形結(jié)合思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商品現(xiàn)在的售價(jià)為每件35元.每天可賣(mài)出50件.市場(chǎng)調(diào)查反映:如果調(diào)整價(jià)格.每降價(jià)1元,每天可多賣(mài)出2件.請(qǐng)你幫助分析,當(dāng)每件商品降價(jià)多少元時(shí),可使每天的銷(xiāo)售額最大,最大銷(xiāo)售額是多少?
設(shè)每件商品降價(jià)x元.每天的銷(xiāo)售額為y元.
(1)分析:根據(jù)問(wèn)題中的數(shù)量關(guān)系.用含x的式子填表:

 
 
原價(jià)
 
每件降價(jià)1元
 
每件降價(jià)2元
 

 
每件降價(jià)x元
 
每件售價(jià)(元)
 
35
 
    34
 
    33
 

 
 
 
每天售量(件)
 
50
 
    52
 
    54
 

 
 
 
 
(2)(由以上分析,用含x的式子表示y,并求出問(wèn)題的解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)y=﹣x2+bx+c的對(duì)稱(chēng)軸為x=2,且經(jīng)過(guò)原點(diǎn),直線AC解析式為y=kx+4,
(1)求二次函數(shù)解析式;
(2)若=,求k;
(3)若以BC為直徑的圓經(jīng)過(guò)原點(diǎn),求k.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,且頂點(diǎn)在直線x=上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點(diǎn)A、B、O的對(duì)應(yīng)點(diǎn)分別是D、C、E,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說(shuō)明理由;
(3)在(2)的條件下,連接BD,已知對(duì)稱(chēng)軸上存在一點(diǎn)P使得△PBD的周長(zhǎng)最小,求出P點(diǎn)的坐標(biāo);
(4)在(2)、(3)的條件下,若點(diǎn)M是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)O、B不重合),過(guò)點(diǎn)M作MN∥BD交x軸于點(diǎn)N,連接PM、PN,設(shè)OM的長(zhǎng)為t,△PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時(shí)M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,矩形的邊軸上,且,直線經(jīng)過(guò)點(diǎn),交軸于點(diǎn)
(1)點(diǎn)的坐標(biāo)分別是       ),       );
(2)求頂點(diǎn)在直線上且經(jīng)過(guò)點(diǎn)的拋物線的解析式;
(3)將(2)中的拋物線沿直線向上平移,平移后的拋物線交軸于點(diǎn),頂點(diǎn)為點(diǎn).求出當(dāng)時(shí)拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知關(guān)于的方程:①和②,其中.
(1)求證:方程①總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)二次函數(shù)的圖象與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),將、兩點(diǎn)按照相同的方式平移后,點(diǎn)落在點(diǎn)處,點(diǎn)落在點(diǎn)處,若點(diǎn)的橫坐標(biāo)恰好是方程②的一個(gè)根,求的值;
(3)設(shè)二次函數(shù),在(2)的條件下,函數(shù),的圖象位于直線左側(cè)的部分與直線)交于兩點(diǎn),當(dāng)向上平移直線時(shí),交點(diǎn)位置隨之變化,若交點(diǎn)間的距離始終不變,則的值是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,拋物線軸交于兩點(diǎn),與軸交于點(diǎn),連結(jié)AC,若
(1)求拋物線的解析式;
(2)拋物線對(duì)稱(chēng)軸上有一動(dòng)點(diǎn)P,當(dāng)時(shí),求出點(diǎn)的坐標(biāo);
(3)如圖2所示,連結(jié)是線段上(不與、重合)的一個(gè)動(dòng)點(diǎn).過(guò)點(diǎn)作直線,交拋物線于點(diǎn),連結(jié)、,設(shè)點(diǎn)的橫坐標(biāo)為.當(dāng)t為何值時(shí),的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知直線l的解析式為,拋物線y = ax2+bx+2經(jīng)過(guò)點(diǎn)A(m,0),B(2,0),D 三點(diǎn).
(1)求拋物線的解析式及A點(diǎn)的坐標(biāo),并在圖示坐標(biāo)系中畫(huà)出拋物線的大致圖象;
(2)已知點(diǎn) P(x,y)為拋物線在第二象限部分上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PE垂直x軸于點(diǎn)E, 延長(zhǎng)PE與直線l交于點(diǎn)F,請(qǐng)你將四邊形PAFB的面積S表示為點(diǎn)P的橫坐標(biāo)x的函數(shù), 并求出S的最大值及S最大時(shí)點(diǎn)P的坐標(biāo);
(3)將(2)中S最大時(shí)的點(diǎn)P與點(diǎn)B相連,求證:直線l上的任意一點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)一定在PB所在直線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線
(1)若求該拋物線與x軸的交點(diǎn)坐標(biāo);
(2)若 ,證明拋物線與x軸有兩個(gè)交點(diǎn);
(3)若且拋物線在區(qū)間上的最小值是-3,求b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案