精英家教網如圖,A、B、C分別是圓O上的三點,∠BAC=40°,則∠OBC的度數(shù)是
 
分析:∠BAC與∠BOC為
BC
所對的圓周角和圓心角,根據圓周角定理可求∠O,由OB=OC,可求∠OBC.
解答:解:∵∠BAC與∠BOC為
BC
所對的圓周角和圓心角,
∴∠O=2∠BAC=80°,
又∵OB=OC,∴∠OBC=
1
2
(180°-∠O)=50°.
故答案為:50°.
點評:本題考查了圓周角定理.關鍵是由圓周角定理求對應的圓心角,利用OB=OC得等腰三角形,由等腰三角形的性質解題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,在正方形ABCD中,點E、F分別為邊BC、CD的中點,AF、DE相交于點G,則可得結論:①AF=DE,②AF⊥DE(不須證明).
(1)如圖②,若點E、F不是正方形ABCD的邊BC、CD的中點,但滿足CE=DF,則上面的結論①、②是否仍然成立;(請直接回答“成立”或“不成立”)
(2)如圖③,若點E、F分別在正方形ABCD的邊CB的延長線和DC的延長線上,且CE=DF,此時上面的結論①、②是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由.
(3)如圖④,在(2)的基礎上,連接AE和EF,若點M、N、P、Q分別為AE、EF、FD、AD的中點,請先判斷四邊形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一種,并寫出證明過程.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網某花木場有一塊形如等腰梯形ABCD的空地(如圖),各邊中點分別為E、F、G、H,測得對角線AC=5m,若用籬笆圍成四邊形EFGH的場地,則需籬笆總長度為
 
m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖中所有的線段可分別表示為
線段AB,BC,AC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,經過原點O的⊙C分別與x軸、y軸交于點A、B,P為
OBA
上一點.若∠OPA=60°,OA=4
3
,則OB的長為
4
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點G,點G在點A,
E之間,連接CE、CF、EF,有下列四個結論:
①△CDF≌△EBC;     ②∠CDF=∠EAF;
③△ECF是等邊三角形;  ④CG⊥AE,
請把你認為正確的結論的序號填在橫線上
①②③
①②③

查看答案和解析>>

同步練習冊答案