【題目】如圖,在△ACB中,∠ACB=90°,∠A=75°,點D是AB的中點.將△ACD沿CD翻折得到△A′CD,連接A′B.
(1)求證:CD∥A′B;
(2)若AB=4,求A′B2的值.
【答案】(1)見解析;(2)12
【解析】
(1)依據直角三角形斜邊上中線的性質可知CD=AD,然后依據等腰三角形的性質和三角形的內角和定理可求得∠ADC=30°,由翻折的性質可知∠CDA′=30°,從而可求得∠A′DB的度數,然后依據DA′=DB可求得∠DBA′=30°,從而可證明CD∥A′B;
(2)連結AA′,先證明△ADA′為等邊三角形,從而可得到∠AA′D=60°,然后可求得∠AA′B=90°,最后依據勾股定理求解即可.
解:(1)∵∠ACB=90°,點D是AB的中點
∴AD=BD=CD= AB.
∴∠ACD=∠A=75°.
∴∠ADC=30°.
∵△A′CD由△ACD沿CD翻折得到,
∴△A′CD≌△ACD.
∴AD=AD,∠A′DC=∠ADC=30°.
∴AD=A′D=DB,∠ADA′=60°.
∴∠A′DB=120°.
∴∠DBA′=∠DA′B=30°.
∴∠ADC=∠DBA'.
∴CD∥A′B.
(2)連接AA′
∵AD=A′D,∠ADA′=60°,
∴△ADA′是等邊三角形.
∴AA′=AD= AB,∠DAA′=60°.
∴∠AA′B=180°﹣∠A′AB﹣∠ABA′=90°.
∵AB=4,
∴AA′=2.
∴由勾股定理得:A′B2=AB2﹣AA′2=42﹣22=12.
科目:初中數學 來源: 題型:
【題目】為了了解學生的課外學習負擔,即墨區(qū)某中學數學興趣小組決定對本校學生每天的課外學習情況進行調查,他們隨機抽取本校部分學生進行了問卷調查,并將調查結果分為A,B,C,D四個等級,列表如下:
等級 | A | B | C | D |
每天課外學習時間 |
根據調查結果繪制了如圖所示的兩幅不完整的統(tǒng)計圖,請你根據圖中信息解答下列問題:
本次抽樣調查共抽取了多少名學生?其中學習時間在B等級的學生有多少人?
將條形統(tǒng)計圖補充完整;
表示D等級的扇形圓心角的度數是多少?
該校共有2000名學生,每天課外學習時間在2小時以內的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A(0,a),B(b,a),且a,b滿足(a﹣3)2+|b﹣6|=0,現同時將點A,B分別向下平移3個單位,再向左平移2個單位,分別得到點A,B的對應點C,D,連接AC,BD,AB.
(1)求點C,D的坐標及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點M,連接MC,MD,使S△MCD=S四邊形ABCD?若存在這樣一點,求出點M的坐標,若不存在,試說明理由;
(3)點P是直線BD上的一個動點,連接PA,PO,當點P在BD上移動時(不與B,D重合),直接寫出∠BAP,∠DOP,∠APO之間滿足的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數的圖象與x軸、y軸分別交于兩點,與反比例函數的圖象分別交于兩點,點,.
求一次函數與反比例函數的解析式;
直接寫出時自變量x的取值范圍.
動點在y軸上運動,當的值最大時,直接寫出P點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)已知,求代數式的值.
(2)2018年6月武侯區(qū)某學校開展了主題為“陽光下成長,妙筆繪武侯”學生繪畫書法作品比賽,要求參賽學生每人交一件作品. 現將從中挑選的40件參賽作品的成績(單位:分)統(tǒng)計如下:
等級 | 成績(用表示) | 頻數 | 頻率 |
|
| 0.2 | |
20 |
| ||
12 | 0.3 |
請根據上表提供的信息,解答下列問題:
①表中的值為 ,的值為 ;
②將本次獲得等級的參賽作品依次用標簽表示. 學校決定從中選取兩件作品進行全校展示,所代表的作品必須參展,另一件作品從等級余下的作品中抽取,求展示作品剛好是的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】端午節(jié)期間,甲、乙兩人沿同一路線行駛,各自開車同時去離家560千米的景區(qū)游玩,甲先以每小時60千米的速度勻速行駛1小時,再以每小時m千米的速度勻速行駛,途中體息了一段時間后,仍按照每小時m千米的速度勻速行駛,兩人同時到達目的地,圖中折線、線段分別表示甲、乙兩人所走的路程,與時間之間的函數關系的圖象請根據圖象提供的信息,解決下列問題:
圖中E點的坐標是______,題中______,甲在途中休息______h;
求線段CD的解析式,并寫出自變量x的取值范圍;
兩人第二次相遇后,又經過多長時間兩人相距20km?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線與x軸交于B點,與y軸交于C點,拋物線經過B、C兩點,與y軸的另一個交點為點A,P為線段BC上一個動點不與點B、點C重合.
求拋物線的解析式;
設拋物線的對稱軸與x軸交于點D,連結CD、PD,當為直角三角形時,求點P的坐標;
過點C作軸,交拋物線于點E,如圖2,求的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com